ANALISI DELL'AFLATOSSINA B₁ IN ALIMENTI ZOOTECNICI CONTENENTI SEQUESTRANTI

Amedeo Pietri, Antonio Gallo, Terenzio Bertuzzi, Silvia Rastelli, Francesco Masoero, Gianfranco Piva Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Agraria, Università Cattolica del Sacro Cuore, Piacenza

Introduzione

Per l'analisi delle Aflatossine (AF), numerosi studi sono stati condotti per valutare l'efficienza di estrazione di alcuni solventi, come metanolo, acetone e acetonitrile; in particolare sono stati considerati i rapporti solvente-acqua (volume solvente/volume acqua), miscelacampione (volume miscela/pesata campione) e le interferenze dovute alla natura del campione (effetto matrice).

I metodi più comunemente usati dai laboratori specializzati prevedono un'estrazione con metanolo:acqua (80+20 v/v) o, seguendo il metodo AOAC, con acetone:acqua (85+15 v/v) (1, 2). Entrambi effettuano la successiva determinazione mediante *High Performance Liquid Chromatography* (HPLC), dopo purificazione attraverso colonna di immunoaffinità. Alcuni autori hanno osservato che la presenza di alcuni sequestranti, aggiunti agli alimenti zootecnici contaminati per ridurre l'escrezione di Aflatossina M₁ (AFM₁)nel latte, può ridurre il recupero percentuale nell'analisi delle AF. Questi additivi, al momento, non sono autorizzati a livello europeo per questo scopo, essi sono però abitualmente aggiunti ai mangimi come ingredienti o antiagglomeranti per aumentare l'efficienza della pellettatura.

L'obiettivo del lavoro è stato quello di esaminare se l'aggiunta di alcuni dei più comuni sequestranti può influenzare l'efficienza delle miscele di estrazione più usate.

Materiali e metodi

Preparazione dei mangimi

Due mangimi, contaminati da Aflatossina B_1 (AFB₁) a due diversi livelli, sono stati preparati utilizzando due farine di mais naturalmente contaminate (10,21 e 32,9 µg/kg di AFB₁), una crusca di frumento (1,4 µg/kg) e una farina di soia (1,11 µg/kg); gli altri ingredienti sono stati farine d'orzo e di girasole non contaminate, minerali e vitamine. Entrambi i mangimi, dopo accurata miscelazione, sono stati divisi in 54 sottocampioni. Ognuno di questi è stato miscelato con uno dei nove sequestranti considerati: 4 argille (sodio bentonite, calcio bentonite, zeolite e caolinite), 1 a base di pareti di lievito, 1 carbone attivo e 3 prodotti commerciali (Atox, Myco AD AZ e NovaTM plus).

L'aggiunta ai mangimi è stata effettuata a due diversi livelli: 1 e 2%. Per ogni livello e ogni sequestrante sono stati preparati 3 replicati. Inoltre, un altro mangime e un campione di mais naturalmente contaminati, sono stati miscelati, dopo omogeneizzazione, con ATOX al 2%.

Analisi delle Aflatossine

Le AF sono state estratte, agitando per 45 minuti, da 25 g di campione con 250 mL delle seguenti miscele: $CH_3OH:H_2O$ (80+20 v/v), acetone: H_2O (85+15 v/v), acetone: H_2O (70+30 v/v), acetone: H_2O (60+40 v/v), acetone: H_2O (50+50 v/v).

L'estratto è stato filtrato su filtro di carta, quindi $5\,\text{mL}$ di filtrato sono stati diluiti con $50\,\text{mL}$ di H_2O distillata e fatti passare su colonna di immunoaffinità. La colonna è stata lavata con $5\,\text{mL}$ di H_2O distillata, quindi le AF sono state eluite in provetta graduata con $2,5\,\text{mL}$ di metanolo.

Dopo concentrazione con flusso di N_2 , l'estratto purificato è stato portato a 2 mL con la miscela acetonitrile: H_2O (25+75 v/v), utilizzando un bagno ad ultrasuoni; la soluzione è stata miscelata, filtrata (0,45 µm) e sottoposta ad analisi mediante HPLC. Per la separazione delle AF è stata utilizzata una colonna RP-18 Superspher (Merck), con fase mobile H_2O :metanolo:acetonitrile (64+23+13 v/v) a flusso 0,5 mL/min.; la rivelazione fluorimetrica è stata effettuata ($\lambda_{eccitazione}$ =365 nm e $\lambda_{emissione}$ =440 nm) dopo derivatizzazione fotochimica post colonna.

Risultati e discussione

Le percentuali di recupero per le diverse miscele di estrazione sono state valutate aggiungendo 0.5~mL di una soluzione standard di AFB₁ ($250~\mu\text{g/L}$) a 25~g di un mangime non contaminato da AF e senza aggiunta di sequestranti, in modo da avere una contaminazione di $5.0~\mu\text{g/kg}$. Per ogni miscela estraente sono stati effettuati tre replicati. Le percentuali di recupero medie sono state superiori al 95% per tutte le miscele di estrazione.

È stato analizzato anche un campione di mais di riferimento certificato (r-Biopharm Rhône) con una contaminazione dichiarata di 4,1 µg/kg; i risultati medi (tre replicati per estrazione) sono stati 4,2 µg/kg per la miscela con metanolo e 4,3 per quelle con acetone. I limiti di rivelazione (*Limit of Detection*, LOD) e di quantificazione (*Limit of Quantification*, LOQ) sono stati rispettivamente di 0,02 e 0,05 µg/kg.

Considerando i mangimi senza sequestranti, non sono state riscontrate differenze statisticamente significative tra i metodi di estrazione metanolo: H_2O (80:20 v/v) e acetone: H_2O (85:15 v/v), anche se livelli più elevati si sono trovati utilizzando l'estrazione con acetone. In particolare, per il mangime a maggiore contaminazione sono stati trovati valori medi di 13,8±1,0 e 15,3±1,2 µg/kg, rispettivamente usando l'estrazione metanolo: H_2O (80:20 v/v) e acetone: H_2O (85:15 v/v); per quello a minore contaminazione valori di 7,0±0,6 e 7,5±0,6 µg/kg, rispettivamente.

Notevoli differenze sono state riscontrate per i mangimi contenenti sequestranti (Tabelle 1 e 2); per tutti i campioni, i risultati evidenziano un'efficienza di estrazione molto scarsa della miscela metanolo:H₂O (80:20 v/v), con percentuali di recupero inferiori al 25%. Usando la miscela acetone:H₂O (85:15 v/v), la percentuale media di recupero è stata del 75% per i mangimi a livello maggiore e dell'84% per quelli a livello minore di AFB₁. L'efficienza di estrazione del metanolo, nei mangimi contenenti sequestranti, è risultata quindi significativamente più bassa (p<0,001) rispetto a quella dell'acetone. Inoltre, è risultato un effetto dose-dipendente (p<0,01): i livelli di AFB₁ si sono rivelati più bassi, quando la dose del sequestrante aggiunto ai mangimi è stata più elevata (2%).

Tabella 1. Contenuto medio di AFB₁ (μg/kg), nei mangimi a maggiore contaminazione, contenenti sequestranti all'1 e 2%, usando le miscele estraenti acetone:H₂O (85:15 v/v) e metanolo:H₂O (80:20 v/v)

Sequestrante	Dose					
	1	%	2%			
	acetone:H₂O	metanolo:H₂O	acetone:H₂O	metanolo:H ₂ O		
Sodio bentonite	11,72 ± 1,75	0,84 ± 0,11	9,74 ± 1,13	0,54 ± 0,11		
Calcio bentonite	$12,56 \pm 0,12$	1,65 ± 0,05	11,50 ± 1,13	0.95 ± 0.52		
Zeolite	11,96 ± 1,43	$2,86 \pm 0,12$	12,59 ± 1,07	$2,79 \pm 0,29$		
Caolinite	$12,83 \pm 0,53$	$3,14 \pm 0,13$	$12,54 \pm 037$	$3,59 \pm 1,18$		
Parete di cellule di lieviti	12,21 ± 1,90	$2,71 \pm 0,02$	10,70 ± 1,00	2,86 ± 0,21		
Carbone attivo	$7,99 \pm 1,01$	$1,36 \pm 0,03$	$5,73 \pm 0,16$	$1,03 \pm 0,02$		
Atox	13,16 ± 2,56	1.34 ± 0.26	12,43 ± 1,87	0.64 ± 0.27		
Myco AD AZ	12,58 ± 1,75	$4,22 \pm 0,18$	11,63 ± 1,99	0.55 ± 0.04		
NovasilTM plus	11,53 ± 1,66	$1,05 \pm 0,15$	13,59 ± 1,94	0.84 ± 0.13		

Tabella 2. Contenuto medio di AFB₁ (μg/kg), nei mangimi a minore contaminazione, contenenti sequestranti all'1 e 2%, usando le miscele estraenti acetone:H₂O (85:15 v/v) e metanolo:H₂O (80:20 v/v)

Sequestrante	Dose					
	1	%	2%			
	acetone:H₂O	metanolo:H₂O	acetone:H ₂ O	metanolo:H₂O		
Sodio bentonite	5,42 ± 0,46	0,53 ±,0,02	5,60 ± 1,04	0,45 ± 0,03		
Calcio bentonite	$7,58 \pm 0,63$	1,94 ± 0,31	$7,15 \pm 0,55$	1.37 ± 0.06		
Zeolite	$7,56 \pm 0,64$	$2,43 \pm 0,32$	$6,72 \pm 0,34$	$2,48 \pm 0,11$		
Caolinite	6.50 ± 0.73	2.27 ± 0.09	6.27 ± 0.30	2.07 ± 0.09		
Parete di cellule di lieviti	6,81 ± 0,13	$2,26 \pm 0,20$	$6,49 \pm 0,28$	$2,44 \pm 0,11$		
Carbone attivo	4,17 ± 0,18	1.30 ± 0.10	2.98 ± 0.09	0.86 ± 0.17		
Atox	7.25 ± 0.43	0.84 ± 0.02	7.25 ± 0.49	0.60 ± 0.06		
Myco AD AZ	$6,68 \pm 0,53$	$4,91 \pm 0,70$	$6,37 \pm 0,12$	$2,85 \pm 0,14$		
NovasilTM plus	$7,41 \pm 0,63$	0.83 ± 0.04	5,58 ± 0,14	$0,60 \pm 0,08$		

Dal confronto tra i diversi sequestranti, si osserva come i mangimi addizionati con carbone, ed estratti con la miscela acetone:acqua (85:15 v/v), evidenziano percentuali di recupero significativamente inferiori: la percentuale di recupero è stata pari al 54% e al 38%, rispettivamente per i mangimi con aggiunta di sequestrante al 1% e al 2%. Successivamente, da campioni naturalmente contaminati, alcuni addizionati con uno dei sequestranti considerati (ATOX al 2%), è stata effettuata in quadruplo l'estrazione delle AF usando diverse miscele acetone: H_2O (Tabella 3). I risultati indicano che le miscele acetone:acqua nei rapporti 70:30 v/v e 60:40 v/v hanno una efficienza di estrazione riguardo all'AFB₁ leggermente superiore rispetto alla miscela 85:15 v/v usata nel metodo AOAC.

Tabella 3. Contenuto medio di AFB₁ (µg/kg) in alcuni prodotti, usando diverse miscele estraenti

Campione	Acetone:H₂O 85:15	Acetone:H ₂ O 70:30	Acetone:H₂O 60:40	Acetone:H ₂ O 50:50	Metanolo:H₂O 80:20
Mangime 1	145,8 ± 1,3	166,2 ± 5,7	164,8 ± 3,6	153,8 ± 3,9	124 ± 7,6
Mangime 1 + ATOX	118,0 ± 3,2	129,0 ± 3,5	129,7 ± 4,7	121,6 ± 4,0	19,8 ± 0,9
2%					
Mais 1	21.3 ± 0.4	$22,5 \pm 0,5$	$24,5 \pm 0.8$	$21,2 \pm 0,8$	$18,5 \pm 0,7$
Mais 1 + ATOX 2%	$21,5 \pm 0,6$	$23,4 \pm 0,5$	23.0 ± 0.9	$21,3 \pm 1,2$	$1,6 \pm 0,1$
Mais 2	$4,1 \pm 0,1$	4.7 ± 0.2	4.7 ± 0.1	4.2 ± 0.1	$3,6 \pm 0,1$
Mais 3	$2,4 \pm 0,1$	$2,7 \pm 0,1$	$2,5 \pm 0,1$	$2,4 \pm 0,1$	$2,2 \pm 0,1$

Conclusioni

Dai risultati ottenuti, risulta evidente, come il metodo che prevede l'utilizzo di metanolo, per estrarre l'AFB₁ in mangimi contenenti sequestranti, può dare risultati errati e portare a decisioni manageriali scorrette negli allevamenti.

Prove su campioni naturalmente contaminati, con e senza aggiunta di sequestranti, hanno dimostrato inoltre come le miscele acetone:acqua nei rapporti 70+30 e 60+40 v/v, risultino avere la più alta efficienza di estrazione.

Bibliografia

- 1. Stroka J, Petz M, Joerissen U, Anklam E. Investigations of various extractant for the analysis of aflatoxin B1 in different food and feed matrices. *Food Additives and Contaminants* 1999;16:331-8.
- Aflatoxin B1 in cattle feed. In: Horwitz W (Ed.). Official methods of analysis of the AOAC International, 2006. 18th ed. vol I. Chapter 49. Maryland, USA: AOAC International; 2006. (Method 2003.02). p. 38