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INTRODUCTION
Toxicology faces the parallel tasks of performing 

safety evaluations that support the development of 
new chemicals before human exposures are permit-
ted, and assessing the potential hazard posed by ex-
posures to chemicals that lack safety evaluations. The 
accelerating pace of chemical discovery and synthesis 
has heightened such a need for efficient prioritization 
and toxicity screening methods. Chemical carcino-
genicity has been the target of numerous attempts 
to create alternative predictive models, ranging from 
short-term biological assays (e.g. mutagenicity tests) 
to theoretical models. Among the theoretical models, 
the application of structure-activity relationships 
(SAR) concepts has earned special prominence. SAR 
uses the wide and well established body of knowl-
edge of chemistry to rationalize the chemical-life 
interactions and to “domesticate” the chemicals, to 
make them safer and more efficient [1-3]. In addition, 
as a result of recent policy developments in different 

countries it is expected that the use of SAR for regula-
tory purposes will sharply increase. For example, the 
European Union adopted a legislative proposal for a 
new chemical management system called REACH 
(registration, evaluation and authorisation of chemi-
cals), which is intended to harmonise the information 
requirements applied to new and existing chemicals 
[4]. REACH provides for the use of SAR for predict-
ing the environmental and toxicological properties of 
chemicals, in the interests of time-effectiveness, cost-
effectiveness and animal welfare. The development of 
SARs for human health endpoints will also contribute 
to meeting the needs of the seventh amendment to the 
EU cosmetics directive [5]. According to a recent as-
sessment by the European Chemicals Bureau (ECB), 
approximately 3.9 million additional vertebrate test 
animals could be used as a consequence of the imple-
mentation of REACH, if alternative methods are not 
accepted by regulatory authorities and adopted by in-
dustry [6]. However, a considerable reduction in animal 
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Riassunto (Relazioni struttura-attività di agenti carcinogenici: stato dell’arte e prospettive). Il campo 
della cancerogenesi chimica ha visto una lunga serie di tentativi di creare modelli alternativi a quelli 
animali, dai saggi a breve termine di mutagenesi ai modelli teorici. Un posto particolare tra quelli teorici 
hanno i modelli basati sulle relazioni struttura-attività. Nella sua versione qualitativa, tale approccio ha 
portato alla identificazione di una varietà di sottostrutture, o gruppi funzionali legati all’induzione di 
mutazioni e/o cancro. Approcci più sofisticati sono le relazioni quantitative struttura-attività, che legano 
le proprietà tossicologiche delle molecole alle loro proprietà chimico fisiche o strutturali. Sia l’approccio 
qualitativo che quello quantitativo forniscono un valido contributo alla stima del rischio delle sostanze 
chimiche, soprattutto nella fase dell’identificazione di priorità. Tra le aree di sviluppo di tali approcci, 
si illustrano le novità rappresentate dalle basi di dati chimico-relazionali, e si presenta la base di dati sui 
cancerogeni chimici ISSCAN, liberamente disponibile sul sito Internet dell’Istituto Superiore di Sanità.

Parole chiave: relazioni struttura-attività, QSAR, cancerogeni, mutageni, banche dati.



118 ANN IST SUPER SANITÀ 2006 | VOL. 42,  NO. 2: 118-126 119STRUCTURE-ACTIVITY MODELS OF CARCINOGENS

use could be obtained if alternatives were applied more 
extensively: acceptance of theoretical models based on 
SAR and related techniques would lead to a saving of 
1.3 to 1.9 million test animals. Another example comes 
from the ongoing program in Canada on the existing 
chemicals. Each of the more than 23 000 substances on 
the domestic substances list, an inventory of chemicals 
and biological agents that were in commerce in Canada 
between January 1984 and December 1986, must be 
“categorized” by September, 2006. The purpose of 
categorization is to determine which substances on 
the list may have the greatest potential for exposure 
to the population, or are persistent or bioaccumulative 
and “inherently toxic” to human beings or non-human 
organisms. Given the paucity of experimental data 
available for the large number of substances in the list, 
this task necessitates increased reliance on alternative 
methods, in at least the early stages, to set priorities 
for additional testing or for further assessment. More 
information on the approaches used by the Canadian 
Authorities can be found at the following web sites:
www.hc-sc.gc.ca/ewh-semt/contaminants/existsub/
index_e.html and www.ec.gc.ca/substances/ese.

  

 CHEMICAL REACTIVITY
AND MECHANISMS OF ACTION
The overlap between mutagenicity and carcinogenic-

ity is quite large, since the first step of the carcino-
genic process often consists of one or more mutations 
(somatic mutation theory of cancer). A unifying ap-
proach to the rationalization of this area has been that 
chemical mutagens and carcinogens act by attacking 
the DNA, based on their electrophilicity per se or after 
metabolic transformation [7]. This concept, together 
with experimental observation, has led to the iden-
tification of several chemical functional groups and 
substructures (structural alerts, SAs) that can cause 
both mutation and cancer; these include carbonium 
ions (alkyl-, aryl-, benzylic-), nitrenium ions, epox-
ides and oxonium ions, aldehydes, polarized double 
bonds (α,β-unsaturated carbonyls or carboxylates), 
peroxides, free radicals and acylating intermediates 
[8, 9]. The identification of the SAs has been a very 
important scientific advancement, since it has provid-
ed means to design safer compounds by avoiding the 
known SAs. In addition, the SAs for mutagenicity and 
carcinogenicity have been incorporated into expert 
systems for predicting toxicological effects of chemi-
cals (e.g. DEREK, OncoLogic) [10]. However, some 
classes of carcinogens (called epigenetic carcinogens) 
do not act through genotoxic mechanisms; for these 
classes, the progress in the identification of SAs has 
been much slower [11].

 QUANTITATIVE STRUCTURE-ACTIVITY 
RELATIONSHIPS
Whereas the SAs define the potential for the chemi-

cals to be carcinogenic or mutagenic, the actual modu-
lation of this potential depends on a series of factors 

(e.g., molecular weight, physical state, solubility, 
degree of chemical reactivity, etc.) which vary within 
each individual class of compounds. In fact, chemicals 
sharing the same SA (e.g. aromatic amine) can behave 
in different ways: some are active (to different extents) 
and some are inactive. Such modulating factors can be 
approximated by minor, context-dependent SAs (e.g., 
the substituents in the different positions of the skel-
eton of a chemical with a primary SA.

However, the qualitative approach based on the rec-
ognition of SAs has clear limitations; for example, it 
is not possible to predict the activity of substructures 
which are not in the list of known SAs, or which have a 
combination of SAs. A powerful generalization is pro-
vided by the quantitative structure-activity relationship 
(QSAR) analysis, which is based on a limited number 
of physical chemical properties with general relevance, 
and produces a mathematical model of the chemical 
determinants of the biological activity. The physical 
chemical properties of interest for the biological activ-
ity of the chemicals are hydrophobic, electronic and 
steric effects [3, 12].

QSARs have been generated for a number of indi-
vidual chemical classes (including aromatic amines, 
nitroarenes, quinolines, triazenes, polycyclic aromatic 
hydrocarbons, lactones) [13, 14]. The majority are 
relative to in vitro mutagenicity; however, a number of 
QSAR models for the animal carcinogenicity exist as 
well. A great aspect of the QSARs for the individual 
chemical classes, as performed according to the classi-
cal Hansch approach, is that they point to the physical 
chemical determinants of the biological activity of the 
compounds; thus they have considerably contributed 
to the understanding of the mechanisms of chemical 
mutagenicity and carcinogenicity. 

The other important goal of the use of QSAR analy-
ses is the risk assessment of chemicals: once formu-
lated, the QSARs can be employed for estimating the 
activity of other chemicals not tested experimentally. It 
should be remarked that, before using the QSAR mod-
els for prediction purposes, their validity should be 
assessed very carefully. Whereas several statistical ap-
proaches and criteria (e.g., leave-one-out, leave-many-
out, shuffling, leverage, etc.) [15] can be used to assess 
the internal statistical goodness of a QSAR model, the 
most stringent criterion is to challenge the model to 
predict the activity of a number of chemicals (external 
test set) of the same chemical class, not used for the 
generation of the model itself. Obviously, the activity 
of the chemicals in the test set has to be known. In 
our hands, carefully generated, mechanistically based 
QSAR models have shown a very high predictive abil-
ity (more than 90% correct predictions of external data 
sets) [16, 17].

 GENERAL PREDICTION MODELS
FOR NONCONGENERIC DATA SETS
Unfortunately, each QSAR model is specific for one 

individual chemical class and the database of experi-
mental results is not enough populated of representative 
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chemicals to provide a basis for modeling the carci-
nogenicity or mutagenicity of each chemical class of 
interest; in addition, the chemicals of interest change 
with the time: e.g. new drugs and new dyes are put 
in commerce continuously, so that similar chemicals, 
already tested for carcinogenicity and from which to 
derive QSAR models, are not available. The response 
to such a situation is represented by a series of attempts 
to develop SARs and QSARs for noncongeneric sets of 
chemicals, i.e. “general” prediction models in order to 
hopefully cope with the thousands of chemicals present 
in the environment. Several approaches have been made 
commercially available as well [10, 14, 18-20]. It should 
be remarked that these general prediction models are 
quite different in nature [10, 14, 18-20] from the classi-
cal QSARs; they range from human experts panels that 
inspect the chemical structures “by eye” and make infer-
ences based on the activity of similar, previously tested 
chemicals, to computerized expert systems, to quantita-
tive approaches devised specifically for sets of noncon-
generic chemicals. On the contrary the classical QSAR 
approaches are specific for congeneric chemicals, i.e. 
sets of chemicals belonging to the same chemical class, 
and acting through the same mechanism of action. 

The general prediction systems usually do not con-
tribute much new mechanistic knowledge, but have to 
be judged for their ability to provide correct predic-
tions of untested chemicals. A stringent criterion is 
prospective prediction: the predictions are performed 
on compounds whose experimental results were not 
existing, or not known when the model was built. 

To evaluate the validity of the prediction approaches 
for noncongeneric chemicals, important prospective 
prediction exercises were performed in the past dec-
ade under the aegis of the US National Toxicology 
Program (NTP) [21, 22]. The exercises invited the 
modeling community to submit predictions on the tox-
icity of chemicals that were in the process of being bio-
assayed by the NTP; at the end of the experimentation, 
the actual results were compared with the theoretical 
predictions. Because of their unbiased character, they 
represent the most important source of information on 
the ability of the prediction systems to deal with “real” 
chemicals. Details and summaries on the NTP predic-
tion exercises are presented in [14].

A NTP comparative exercise regarded the prediction 
of the mutagenicity in Salmonella typhimurium of 100 
chemicals of different chemical classes. Comparable 
performance was attained by: a) a human expert (John 
Ashby) that inspected the chemical structures and made 
his predictions based on the presence of SAs in the 
structures; and b) two computerized systems (Topkat, 
Case) (74–76% overall correct prediction) [23]. 

Another NTP comparative exercise regarded the pre-
diction of the rodent carcinogenicity of 44 compounds 
of different chemical classes [21]. A detailed analysis 
of the results is in [24]. For approaches that relied sole-
ly on information derived from the chemical structure, 
the overall accuracy was in the range 50-65%, whereas 
the human experts Tennant and Ashby [21] − that 
combined the inspection of SAs with the knowledge 

of short term mutagenicity tests or subchronic bioassay 
results − attained 75% accuracy. 

A second comparative exercise on the prediction 
of rodent carcinogenicity of 30 chemicals in the 
progress of being bioassayed was performed by NTP 
[22]; an analysis of the results of this exercise is in 
[25]. The highest overall accuracy in this second ex-
ercise was 65%, and was attained by human experts 
(the OncoLogic team) that inspected the chemical 
structures and reasoned in terms of chemical analogy 
with known carcinogens and noncarcinogens. The ex-
perimental Syrian hamster embryo cells transformation 
assay had a similar overall performance. 

Together with the above comparative prediction ex-
ercises, a number of other external validation exercises 
have challenged the most popular commercial software 
programs (DEREK, Multicase, Topkat). A common 
finding of these studies is that the performance in 
prediction varied very much according to the subset of 
chemicals to be predicted: this indicates that the level 
of uncertainty of the predictions is quite high, and is 
not known in advance [14, 26].

VALUE OF THE PREDICTION APPROACHES
Overall, it can be concluded that predictions for the 

individual chemicals cannot be taken at face value and 
cannot replace the experiments, when necessary. Their 
main role is to complement the information of dif-
ferent nature and from different sources. At the same 
time, the structure-activity-based methods can have a 
great role, e.g., in priority setting of large numbers of 
chemicals. This has been brilliantly demonstrated by 
the selection process for chemicals to be bioassayed 
by the NTP: this selection was operated by human 
experts largely based on the recognition of SAs. As 
a matter of fact, the proportion of carcinogens among 
the “suspect” chemicals was almost ten times higher 
than that relative to the chemicals selected only on 
production/exposure considerations [27]. Another pos-
itive evidence is that the presently available knowledge 
permits the identification of the genotoxic, transpecies-
transex-carcinogens more efficiently than that of the 
nongenotoxic ones [28]; the former are likely to be the 
most harmful for the human health.

It should be emphasized that the different (Q)SAR 
approaches vary largely in terms of reliability. First 
are the mechanistically-based QSARs for individual 
chemical classes; as shown by our experience reported 
above, they can have a very high predictive ability. 
These methods apply to congeneric sets of compounds. 
Among the “general” approaches for noncongeneric 
chemicals, the best results have been obtained by 
panels of human experts, that inspect the chemical 
structures and apply subjective criteria of “similarity” 
with known carcinogens and noncarcinogens. On the 
other hand the commercially available “all purpose” 
prediction software systems can be a useful support 
for the expert judgment as well, provided that they 
offer “transparent” predictions and not only black box 
responses. Transparency includes declaring the SAs 
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and the rules used for formulating the predictions, as 
well as the list of chemicals − with known activity − 
similar to the query chemical (possibly together with a 
similarity measure). 

BUILDING IMPROVED (Q)SAR
In the recent years, an aspect that has earned spe-

cial attention is that of the generation of databases to 
be used for the development of (Q)SAR models for 
mutagenicity and carcinogenicity models. In fact, the 
generation of better predictions is strictly related to 
the accessibility of high quality experimental data for 
the scientific community. This is crucial, for example, 
for retrieving enough representative chemicals of indi-
vidual chemical classes, in order to generate QSARs. 
This is also crucial to the process of human expert 
judgement, which necessitates: a) access to all the 
relevant literature; and, b) capability to search across 
toxicity databases using both biological and chemical 
criteria [9]. 

In this field, a rapid progress has taken place, both in 
terms of initiatives and of technological innovation.

 DATABASES OF CHEMICAL
MUTAGENS AND CARCINOGENS
Among the sources of freely available data on chemi-

cal substances, one of the principal resources is the 
TOXNET database of the National Library of Medicine 
(NLM) (http://toxnet.nlm.nih.gov). TOXNET is a 
cluster of different databases, collecting information on 
toxicology, hazardous chemicals, environmental health, 
and toxic releases. From the web site, it is possible to 
search across and within the databases by several identi-
fiers, such as Chemical Name, CAS Registry Number, 
Molecular Formula, Classification Code, Locator Code, 
and Structure or Substructure (with the CHEMID PLUS 
protocol). Among the TOXNET databases, the Chemical 
Carcinogenesis Research Information System (CCRIS) 
and the GENE-TOX databases deal specifically with 
mutagenicity and carcinogenicity data.

CCRIS contains over 8000 chemical records with 
animal carcinogenicity, mutagenicity, tumor promo-
tion, and tumor inhibition test results provided by the 
National Cancer Institute (NCI). Test results have been 
reviewed by experts and all the records are written in 
a standardized format. GENE-TOX contains genetic 
toxicology (mutagenicity) test data, resulting from 
expert peer review of the open scientific literature, 
on over 3000 chemicals. The GENE-TOX program 
was established to select assay systems for evaluation, 
review data in the scientific literature, and recommend 
proper testing protocols and evaluation procedures for 
these systems.

Another repository of experimental carcinogenicity data 
available in the web is the Carcinogenic Potency Database 
(CPDB) (http://potency.berkeley.edu/cpdb.html). This 
database collects the results from 6153 chronic, long-
term animal cancer tests on 1485 chemicals, that have 
been published in the general literature through 1997 

and by the National Cancer Institute/National Toxicology 
Program through 1998. CPDB is organized alphabeti-
cally by chemical name. All experiments of a chemical 
are listed under the name of the test agent; for each ex-
periment, information is included on test animals, features 
of experimental protocol, and carcinogenicity results in 
detail, including literature citation. CPDB is download-
able in pdf, xls or txt formats, and searchable by chemical 
name, CAS number, or author. 

The US National Toxicology Program (NTP), makes 
available on the Web (http://ntp.niehs.nih.gov) data 
from more than 500 long term toxicology and carcino-
genesis tests, collected by the NTP and its predecessor, 
the National Cancer Institute’s Carcinogenesis Testing 
Program, and organized in a database at the National 
Institute of Environmental Health Sciences (NIEHS). 
To access the data, stored as technical reports, the 
user can browse them directly or make text searches 
(by chemical name or CAS number, for example), 
or download the reports in pdf format. From the 
International Agency for Research on Cancer (IARC) 
Web site it is possible to access the IARC Monographs 
on the Evaluation of Carcinogenic Risks to Humans 
(http://monographs.iarc.fr). In these documents, in-
dependent assessments by international experts of 
the carcinogenic risks to humans posed by a vari-
ety of agents, mixtures and exposures, are published. 
The Monographs are searchable by key word, CAS 
Number, synonym or chemical name.

Another source of carcinogenicity data is the Survey of 
Compounds Which Have Been Tested for Carcinogenic 
Activity (CD-ROM Version 4.0, GMA Industries Inc.). 
This collection contains data extracted from experi-
mental carcinogenicity research results, published in 
the literature between 2000 and 1934 (and earlier) for 
over 10 000 chemicals. Principal chemical identifiers 
for searching through these data are the chemical name 
and CAS number.

Recently, a very useful tool to browse through the 
different toxicology databases available on the web has 
been created by the National Center for Biotechnology 
Information (NCBI) through the PubChem project (ht-
tp://pubchem.ncbi.nlm.nih.gov). PubChem is a public 
information system (tightly integrated into the cluster 
of biological and literature databases hosted at NCBI, 
such as PubMed, www.ncbi.nih.gov/entrez/query.fcgi) 
that links chemical identifiers (such as chemical name, 
CAS number and chemical structures) to biological 
activity knowledge of substances. The PubChem 
interfaces provide extensive query capabilities on tex-
tual and numeric information, as well as a comprehen-
sive set of structure-based query methodologies.

 NEW TOOLS: CHEMICAL
RELATIONAL DATABASES
Until recently, many existing public toxicity databases 

have been constructed primarily as “look-up-tables” of 
existing data, and most often do not contain chemical 
structures or consider potential SAR uses of the data. 
These databases typically utilize chemical names (usu-
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ally common or commercial names) and Chemical 
Abstract Service (CAS) registry numbers. These types of 
chemical identifiers are non-unique, prone to transcrip-
tion and formatting errors, and devoid of any chemical 
information. On the contrary, chemical structure as a 
chemical identifier has universally understood mean-
ing and scientific relevance. Chemical structure and 
chemical concepts (e.g. reactive functional groups, acid-
ity, hydrophobicity, electrophilic reactivity, free radical 
formation) provide a common language and framework 
for exploring the underlying chemical reactivity bases 
for diverse toxicological outcomes. Hence, chemical 
structure should be considered an essential identifier 
and scientifically useful metric for chemical toxicity da-
tabases. Effective linkage of chemical toxicity data with 
chemical structure information can facilitate and greatly 
enhance data gathering and hypothesis generation in 
conjunction with (Q)SAR modeling efforts [29].

Thus, a crucial point is that of collecting and stand-
ardizing portions of the existent knowledge, in a way 
that allow: a) exploration across both chemical and bio-
logical domains; and b) structure-searchability through 
the data. These characteristics may be gained when 
chemical structures and toxicity data are incorporated 
into what is termed a Chemical Relational Database 
(CRD). CRD is a special type of relational database 
whose main informational unit is a chemical structure 
and whose fields are attributes or data associated with 

that chemical structure. Most commercially available 
CRD applications provide substructures and func-
tional groups search features, different algorithms 
for searching compounds chemically similar to query 
ones (similarity search), and text and data field search 
functions. 

In order to be accessed with a CRD application, the 
information have to be stored in specialized file for-
mats. Among them, Structure Data File (SDF) format 
has become as the most widely used public standard 
for exchange of structure/data information on chemi-
cals. SDFiles are simple text files that adhere to a strict 
format for representing multiple chemical structure 
records and associated data fields. Each record in the 
file is composed by a first part, where the 2D or 3D 
structure of the molecule is represented as MOLfile 
format, and a second part with numerical or text data 
field (Figure. 1). Hence, SDF files are very versatile: 
they can accommodate many types of data, are easily 
edited and manipulated by programming scripts, and 
could be easily ported to other types of standard for-
mats, such as the mark-up languages, XML and CML.

THE DSSTOX DATABASE CLUSTER
A most remarkable example of database designed 

according to the novel criteria is the distributed 
Structure-Searchable Toxicity (DSSTox) Database 

0.3600 0.8960 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.8880 1.3840 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.7160 -0.4000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

-0.1080 -1.4600 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.1800 1.6400 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0

-1.7920 0.7560 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0
-1.0560 2.4760 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0
1.7960 -0.6200 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0
0.3040 -2.4800 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0

-1.2040 -1.3760 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0

Text and data fields

2D Structure

4 10 1 0 0 0 0
4 9 1 0 0 0 0
9 8 1 0 0 0 0
3 4 2 0 0 0 0
2 7 1 0 0 0 0
2 6 1 0 0 0 0
1 5 1 0 0 0 0
1 3 1 0 0 0 0
1 2 2 0 0 0 0

10 9 0 0 1 02000

M END
> <Substance ID>  (41)
41

> <Mouse_Female_Canc>  (41)
3

> <SAL>  (41)
3

> <Rat_Male_Canc>  (41)
3

Fig. 1 | A sample Structure Data File (SDF), containing both structural (top) and data (bottom) information.
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Network, which is a project of the US Environmental 
Protection Agency’s Computational Toxicology 
Program (www.epa.gov/comptox). A primary objective 
of the DSSTox web site (www.epa.gov/nheerl/dsstox) 
is to serve as a central community forum for publishing 
standard-format, structure-annotated chemical toxicity 
data files for open-access, public use. In this initial 
phase, data files cannot be structure-searched on the 
DSSTox web site itself, but the data files can be down-
loaded in their entirety and freely used. 

At present, the DSSTox cluster includes five separate 
databases: CPDBAS – Carcinogenic Potency Project 
Summary Tables (Source, L.S. Gold, Carcinogenic 
Potency Project, UC Berkeley); DBPCAN – EPA 
Disinfection By-products Carcinogenicity Estimates 
Database (Source, Y.T. Woo, US EPA, Office of 
Pollution Prevention & Toxics); EPAFHM – EPA 
Fathead Minnow Acute Toxicity Database (Source, 
C. Russom, US EPA, Mid-Continental Ecology 
Division-Duluth); NCTRER – FDA NCTR Estrogen 
Receptor Binding Database (Source, Weida Tong 
and Hong Fang, National Center for Toxicological 
Research, Jefferson, Arkansas); FDAMDD – FDA 
Maximum Recommended Daily Dose (Source, 
Edwin Matthews and R. Daniel Benz, US FDA, 
Rockville, MD). 

Each DSSTox database is published as a separate and 
distinct module that adheres to standard conventions 
in SDF data file format, file names, chemical structure 
fields, and minimum documentation requirements. 
Together with the SDF file, the DSSTox provides an 
MS Excel-readable file (xls) (reporting the non-struc-
tural data), and an Acrobat-readable file (pdf) which 
displays the traditional graphical representation of the 
chemicals. 

In addition, the DSSTox web site provides a detailed 
guide on the use of files, and a rich documentation on 
the entire subject of databases and related concepts 
[30, 31].

 THE ISSCAN DATABASE
ON CHEMICAL CARCINOGENS
To provide the experts with a decision support tool, 

and to provide the scientific community with good 
quality data for modeling purposes, at the Istituto 
Superiore di Sanità a CRD database on chemical car-
cinogens was built. The database is called ISSCAN: 
“Chemical carcinogens: structures and experimental 
data”, and is located on the web site of the Institute. 
The data can be freely downloaded from the address:  
http://progetti.iss.it/ampp/hhhh/hhhh.php?id=233, 

Fig. 2 | Example of substructure searching with Leadscope. The chemicals including aniline as a substructure are pointed out by the 
search capability.
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or from the DSSTox site: www.epa.gov/ncct/dsstox/
sdf_isscan_external.html.

The ISSCAN database contains information on chemi-
cal compounds tested with the long-term carcinogenicity 
bioassay on rodents (rat, mouse). The data were cross-
checked on different sources of information available. 

The general structure of the database is inspired by 
that of the DSSTox. The ISSCAN database is composed 
of standard chemical data fields, such as 2D structure, 
chemical name and synonyms, CAS registry number, 
molecular weight, chemical formula and SMILES nota-
tion, together with biological data fields: carcinogenic 
potency in rat and mouse, mutagenicity in Salmonella 
typhimurium (Ames test), carcinogenicity results in the 
four experimental groups most commonly used for the 
cancer bioassay, carcinogenicity results from the NTP 
experimentation (when available), overall carcinogenic-
ity, together with the source of carcinogenicity data. 

From the web site it is possible to download four dif-
ferent files:

1)  an SDF file containing chemical structures together 
with chemical and biological data; 

2)  a PDF file with a detailed explanation and guidance 
of use;

3)  a PDF file with 2D chemical structures of the sub-
stances;

4) an XLS file of the data.

The specific characteristics of the ISSCAN database 
in respect to other databases should be emphasized. 
The primary goal was twofold: a) providing the sci-
entific and regulatory community with carcinogenicity 
calls that have been re-checked one by one, in order to 
ensure the quality of the data; b) coding the biological 
data (carcinogenicity and Salmonella mutagenicity) in 
numerical terms, that can be used directly for QSAR 
analyses. This aspect of being QSAR-ready eliminates 
the intermediate passage of data transformation, that 
often is problematic for the QSAR practitioner without 
specific toxicological expertise. 

 MORE ON THE SEARCHING
CAPABILITY OF CRD DATABASES
Together with simple searches on the XLS (Excel-read-

able) file, more complex searches can be performed on the 
SDF file by using specialized CRD software programs, 
such as e.g., Leadscope (Leadscope Inc., Columbus, OH) 
and ChemFolder (ACD/ChemFolder, Toronto).

When the SDFile is imported into a CRD applica-
tion, it is possible to do structure/text/data relational 
searching across records in the database. In Figure 2, 
as an example, the substructure searching results by the 
program Leadscope, using aniline as a query structure, 
are depicted. The result of the search consists of all 

Fig. 3 | Example of classification of the chemicals in a database by chemical classes. The classification capability of Leadscope has been used.
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chemicals in the database containing aniline as basic 
substructure.

Another very useful feature for (Q)SAR purposes is the 
possibility of searching through the database by functional 
group or chemical classes. An example of this capability is 
presented in Figure 3, using Leadscope as a CRD applica-
tion to read the SDFile. The figure shows that the chemi-
cals in the database are divided into chemical classes, and 
the frequency in each class is given. Moreover, it is possi-
ble to add colors to each class bar, pointing visually to the 
abundance in each class of the chemicals active and inac-
tive for some selected property (here carcinogenicity). 

CONCLUSIONS
The evidence summarized in this work points to both 

limitations and potentiality of the (Q)SAR approaches. 
At the level of large numbers of chemicals (e.g., prior-
ity setting), the careful use of (Q)SAR provides a very 
effective support; it also contributes to the mechanistic 

understanding of chemical – life interactions. Within 
this context, there is much space for further research 
and improvements. In this paper, we have illustrated 
the potentiality coming from the recent developments 
in databases. We conclude with the reflections made 
by Rainer Franke regarding the role of (Q)SAR in drug 
research: “As the drug discovery process is of a very 
complex nature, effective drug design requires an entire 
spectrum of techniques in which QSAR methods still 
play an important role. (…) The real power of (Q)SAR 
methods is to extract and synthesize information from 
data to obtain hypotheses that can be put to experimen-
tal test. No dramatic overnight discoveries of wonder 
drug will result, but an increase in the chance of success 
due to indications of promising directions is a realistic 
expectation” [12]. The above concept applies to the use 
of (Q)SAR in predictive toxicology as well.
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