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Key Messages

• Lactobacillus rhamnosus (LGG) interferes with inflammatory reaction triggered by infection in human colonic

muscle. Therefore, this study provides a rational design for clinical studies in which the efficacy of probiotics in

bacterial-related gut motor disorders could ultimately be determined.

• Aim of the study was to investigate the possible protective effects of LGG, and of its derived products (culture

supernatant), on LPS-induced morphofunctional alterations of human colonic smooth muscle.

• Surgical specimen of human colon were used to obtained muscle strips and isolated cells. Experimental

samples were exposed either to the sole LGG or to LPS, in the presence or absence of the probiotic or its

supernatant.

• LGG, as well as its culture supernatant, activate an intrinsic myogenic response able to counteract LPS pro-

inflammatory burst and to protect human gastrointestinal smooth muscle from LPS-induced damage. These

effects occur via a direct involvement of TLR2 expressed on human colonic smooth muscle cells.

Abstract

Background Lactobacillus species might positively

affect gastrointestinal motility. These Gram-positive

bacteria bind Toll-like receptor 2 (TLR2) that elicits

anti-inflammatory activity and exerts protective

effects on damage induced by lipopolysaccharide

(LPS). Whether such effect occurs in gastrointestinal

smooth muscle has not been established yet. Aim of

this study was to characterize the effects of Lactoba-

cillus rhamnosus GG (LGG) and of supernatants

harvested from LGG cultures on human colonic

smooth muscle and to explore their protective activity

against LPS-induced myogenic morpho-functional

alterations. Methods The effects of LGG (ATCC

53103 strain) and of supernatants have been tested

on both human colonic smooth muscle strips and

isolated cells in the absence or presence of LPS

obtained from a pathogenic strain of Escherichia coli.

Their effects on myogenic morpho-functional proper-

ties, on LPS-induced NFjB activation, and on cytokine

production have been evaluated. Toll-like receptor 2

expression has been analyzed by qPCR and flow

cytometry. Key Results Lactobacillus rhamnosus GG

exerted negligible transient effects per se whereas it

was capable of activating an intrinsic myogenic

response counteracting LPS-induced alterations. In

particular, both LGG and supernatants significantly

reduced the LPS-induced morpho-functional

alterations of muscle cells, i.e. cell shortening and

inhibition of contractile response. They also hindered

LPS-induced pro-inflammatory effects by decreasing
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pro-inflammatory transcription factor NFjB activation

and pro-inflammatory cytokine IL-6 secretion, and

restored the secretion levels of anti-inflammatory

cytokine IL10. Conclusions & Inferences Taken

together these data demonstrate that LGG protects

human colonic smooth muscle from LPS-induced

myogenic damage and might be beneficial on intesti-

nal motor disorders due to bacterial infection.

Keywords Lactobacillus rhamnosus GG, human colo-

nic smooth muscle, antipathogenic compounds, rever-

sion of LPS damage, myogenic dysfunction, toll-like

receptors.

INTRODUCTION

Recent evidence suggests that neuromotor apparatus

might represent a potential target for probiotics.1 The

Escherichia coli strain Nissle 1917 specifically modu-

lates contractility of human colonic muscle strips,2

and Lactobacillus species regulate jejunal motility,3,4

human smooth muscle cell contractility,5 and colonic

neuron excitability.6 Besides, the influence of micro-

biota on gastrointestinal motor activity has also been

confirmed by observations in germ-free animals and

models of gut dysfunction.7–9 Lactobacillus species are

Gram-positive bacteria whose recognition occurs

through Toll-like receptor 2 (TLR2), which heterodi-

merizes with TLR1 and TLR6 to activate intracellular

signaling.10 Interestingly, these receptors have been

found expressed by human colonic smooth muscle

cells (SMC).11 Toll-like receptor 2 function has also

been reported in cardiomyocytes,12 and its ligation has

been shown to attenuate cardiac dysfunction in septic

mice.13 Furthermore, probiotics produce a vast array of

biologically active substances, including many neuro-

modulators and neurotransmitters that influence affer-

ent signaling to the enteric nervous system and to the

brain14–16 but also act on smooth muscle physiology.

Current evidence indicates that Lactobacillus

rhamnosus (LGG) can exert anti-inflammatory effects

in the gut and that some Lactobacillus species can

specifically exert a protective activity against lipopoly-

saccharide (LPS)-induced inflammatory damage in

murine models.17–21 These effects have been reported

on both small intestinal epithelial cells and ileum in

rats,22 and in an experimental model of septic shock in

mice.23 It is of note that, recently, it has been reported

that also probiotic-derived factors released from living

probiotics can demonstrate beneficial properties against

pathogen-induced inflammation.24 Thus, it has been

suggested that probiotic supernatants could represent a

valuable source of new antipathogenic compounds.24

In human colonic SMC, Gram-negative bacteria-

derived LPS activates the pro-inflammatory TLR4

signaling pathway.25 Prolonged activation of this path-

way produces a persistent inflammatory cytopathic

oxidative imbalance and consequent NF-jB activation

that leads to the de-differentiation of SMC toward the

so-called synthetic phenotype. This phenotype persists

after LPS-washout and contributes to muscle dysfunc-

tion.26 As Lactobacillus paracasei has been shown to

normalize smooth muscle hyper-contractility in a

murine postinfective irritable bowel syndrome

model,27 it can be hypothesized that these protective

effects of Lactobacillus could occur, as in cardiomyo-

cytes,13 also in enteric muscle.

Aim of the present study was to study the direct

effects of L. rhamnosus GG (LGG) and of supernatants

harvested from LGG cultures on human colonicmuscle

to assess if they could exert a protective role against

LPS-induced myogenic morpho-functional alterations.

MATERIAL AND METHODS

The following materials were used: Dulbecco’s modified Eagle’s
medium (DMEM), penicillin–streptomycin solution, gentamicin,
anphotericin B, antimycin, fetal bovine serum (FBS) (LONZA,
Basel, Switzerland); collagenase CLS type II (Invitrogen, Carlsbad,
CA, USA); highly purified LPS obtained from a pathogen strain of
E. coli (O111:B4) tested for the specific activation of TLR4 (Alexis,
Lausen, Switzerland); ATP-regenerating system (Sigma Chemical
Co., St Louis, MO, USA) and LGG obtained from the strain
ATCC53103.

Preparation of human smooth muscle strips and
cells and experimental protocols

Muscle specimens were obtained from disease-free surgical spec-
imens of human colon. All patients gave informed consent, and
the study was approved by Ethical Committee (ref. no. 1106,
2010). For muscle strips preparation, specimens were put in
oxygenated, chilled Krebs solution containing (in mM) 116.6
NaCl, 21.9 NaHCO3, 1.2 KH2PO4, 5.4 dextrose, 1.2 MgCl2, 3.4
KCl, and 2.5 CaCl2. After removal of the mucosa and submucosa
layers, colonic circular smooth muscle was cut into small strips
(10-mm long by 2-mm wide) by sharp dissection. The strips were
mounted in separate 10-mL muscle chambers as previously
described.28 Strips were initially stretched to 2.0 g of force to
bring them near conditions of optimum force development and
equilibrated for an additional 30 min after continuous perfusion
with oxygenated Krebs’ solution. The solution was equilibrated
with a gas mixture containing 95% O2 and 5% CO2 at a pH level
of 7.4 and at 37 °C. During the perfusion period, spontaneous
phasic contractions developed gradually and stabilized after a 30-
minute period of equilibration. Isometric contractions were
measured using force displacement transducers connected with
a computer using MacLab system (Oxford, UK).

Primary human colonic SMC were isolated as previously
described.29 Briefly, slices of circular muscle layer were incubated
overnight in DMEM supplemented with penicillin–streptomycin
solution (10 000 U/mL), gentamicin (1 mg/mL), amphotericin B
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(250 lg/mL), FBS (10%), an ATP-regenerating system (ATP 3 mM,
phosphocreatine 10 mM, creatine phosphokinase 10 U/mL), anti-
mycin (10 lM), and collagenase (150 U/mL). On the following
day, digested muscle strips were suspended in DMEM supple-
mented only with FBS and antibiotics for 20 min to allow
spontaneous dissociation of SMC. Cells were then harvested and
used either immediately or maintained in suspension for up to
72 h.

Experimental protocols

Strips were exposed, for 30 min, only to Krebs solution (control) or
to LGG at different concentrations and afterwards stimulated
with a maximally effective dose of acetylcholine (10 lM).

The obtained richly pure and homogeneous primary SMC
culture was exposed only to DMEM (control) or to different
concentrations of LGG for 30 min or for 24 h. Culture was also
exposed to 1 lg/mL highly purified LPS obtained from a pathogen
strain of E. coli (O111:B4) in the presence or absence of the
probiotic or its supernatant. Supernatants were harvested, by
centrifugation and filter sterilization, from LGG culture.30 At the
end of the treatments, cells were prepared for the following
analyses.

Total RNA extraction

Total RNA was harvested from SMC using Trizol (Invitrogen Life
Technologies) according to the manufacturer’s protocol, and RNA
integrity was confirmed by electrophoresis on 1% agarose gel and
ethidium bromide staining (0.1 lg/mL). Optical density at 260 nm
was used to estimate the concentration of total RNA. RNA
samples were stored at �70 °C.

Real-time analysis

After treatment at 37 °C for 30 min with 20–50 units of RNase-
free DNase I (Roche Diagnostics Corp., Indianapolis, IN, USA),
oligo-dT primers (Roche Diagnostics Corp.) were used to synthe-
size single-stranded cDNA. mRNAs were quantified using SYBR
green Master Mix (Applera Corp., Norwalk, CT, USA) with
specific human oligonucleotides in a GeneAmp Abiprism 7000
(Applera Corp.). In each assay, calibrated and no-template controls
were included. Each sample was run in duplicate. SYBR green dye
intensity was analyzed using the Abiprism 7000 SDS software
(Applera Corp.). All results were normalized to the unaffected
housekeeping gene actin. The following specific human oligonu-
cleotides were used: TLR1: 5′-GCC TAT ATG CAA AGA GTT
TGG C-3′, 5′-CTC TCC TAA GAC CAG CAA GAC C-3′. TLR2:
5′-GCC AAA GCT TTG ATT GAT TGG-3′, 5′-TTG AAG TTC
AGC TCC TG-3′. TLR6: 5′-CCC ATT CCA CAG AAC AGC AT-
3′, 5′-ATA AGT CCG CTG CGT CAT GA-3′. b-ACTIN: 5′-TCA
CCC ACA CTG TGC CCA TCT ACG-3′, 5′-CAG CGG AAC C.
C TCATTG CCC AAT G-3′

Measurement of contractile response

Contraction was measured on SMC by image scanning microm-
etry using a ProgRes� camera with CapturePro 2.6 application
software (Jenoptik Laser Optik, Jena, Germany) installed on a
contrast-phase microscope Leica 2500 (Leica Microsystems,
Wetzlar, Germany) as previously described.31 Biological
morpho-functional features (cell length and contractile response)

were measured in blind both in the untreated state (control) and
upon LGG or LPS exposure. Contraction to a maximal dose of
acetylcholine (1 lM) was expressed as percentage decrease in cell
length from control taken as 100.

Surface expression of TLR2

An indirect immunofluorescence assay was developed on SMC to
quantify surface expression level of TLR2.32 Unfixed living cells
were incubated for 30 min at 4 °C with monoclonal anti-TLR2
(0.1 lg/mL) in PBS containing 1% BSA. After washings in PBS,
fluorescein isothiocyanate-conjugated anti-mouse IgG (c-chain
specific, Sigma-Aldrich, St Louis, MO, USA) was then added and
incubated at 4 °C for 30 min. After further washings, cells were
counterstained with Trypan blue dye to distinguish dead cells
(excluded from our analysis) from living cells. Samples were
analyzed on a FACSCalibur flow cytometer (Becton Dickinson,
San Jose’, CA, USA) using FL-1 and FL-3 detectors.

NFKB assay

Quantitative analysis of the activation state of nuclear factor KB
(NFKB) was performed using specific ELISA kit, FACE NFKB p65
profiler (Active Motif, Rixensart, Belgium) following manufac-
turer instruction.

Analysis of cytokine secretion

IL-6 and IL-10 levels were determined in supernatants of control
and treated cells using sensitive ELISA kits (R&D System,
Minneapolis, MN, USA). Briefly, supernatant aliquots were
removed at the end of treatments and assayed for IL-6 and IL-10
presence according to the manufacturer’s instructions.

Data and statistical analysis

Data are expressed as mean � SE of duplicate examinations of
n experiments, n referring to the number of individual patients
from whom the colonic specimens were obtained. Statistical
analysis was performed by parametric ANOVA test, corrected for
multiple comparison by the Bonferroni procedure. p values of less
than 0.05 were considered as significant.

RESULTS

To assess the interaction of LGG with human colonic

smooth muscle, whole muscle tissue (muscle strips,

MS) and primary cultures of isolated SMC were

exposed to increasing concentrations of the probiotic.

At rest, in the absence of LGG, MS developed a stable

phasic contraction with standard contractile response

to a maximal dose of acetylcholine of 42.5% � 7.6 over

basal, while SMC presented a resting cell length of

90.7 � 1.8 lm and a maximal contractile response to

acetylcholine of 31.1% � 1.1 over basal. Short-term

exposure (30 min) of both MS and SMC to LGG

determined significant (p < 0.05) dual effects (Fig. 1A

and B). Firstly it induced a dose-dependent increase, in
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respect to resting state, of spontaneous contraction in

MS (Fig. 1A, left y axis) and a length decrease (short-

ening) in SMC (Fig. 1A, right y axis). The second motor

modification induced by LGG consisted in alterations

of smooth muscle activity ending in the inhibition of

contractile response to the muscarinic agonist acetyl-

choline. Again, LGG effects were observed both on MS

and isolated SMC and increased dose-dependently,

strongly suggesting a direct myogenic effect of LGG

(Fig. 1B). Individual results of dose- and time-depen-

dent effects of LGG on SMC are shown in Figs S1 and

S2, respectively. Representative tracing of human

muscle strips are shown in Fig. S3.

To verify this hypothesis, the quantitative expression

of Gram-positive bacteria-sensing receptors, namely

TLR2 and its two heterodimers TLR1 and TLR6, was

evaluated. qPCR analysis showed that the mRNA

encoding TLR1, 2, and 6 receptors were constitutively

expressed on SMC in almost similar amounts (TLR1:

7.46 � 0.90; TLR2: 7.19 � 0.37; TLR6: 7.41 � 0.33).

Thereafter, a quantitative analysis of cell surface

expression level of TLR2 was also performed, before

and after SMC exposure to 120 9 106 CFU/mL of LGG.

Surface expression of TLR2 in resting cells (median

fluorescence intensity, MFI: 8.96 � 0.44) was signifi-

cantly decreased (�51.1 � 11.3%) in cells exposed to

LGG (MFI: 4.42 � 1.65, p < 0.01; Fig. 1C). This reduc-

tion in the receptors available formonoclonal anti-TLR2

binding further suggested the occurrence of an interac-

tion of LGG with TLR2 receptors.

Lactobacillus rhamnosusGG-induced morpho-func-

tional smooth muscle modifications were reversible. In

fact, SMC shortening (Fig. 2A) and reduced contractil-

ity (Fig. 2B), observed at shorter time points (30 and

60 min), were reverted at prolonged exposure times

(24 h) in that SMC, despite the presence of LGG,

progressively restored their length and their contractile

response to acetylcholine. Further evidence of the

reversibility of short-term LGG effects was offered by

the complete recovery of stable phasic contraction and

contractile response to acetylcholine in MS following

LGG washout (Fig. 2C).

To test LGG protective role against pathogenic

infective bursts, SMC were incubated with pathogen

LPS (E. coli O111:B4) in the absence or presence of

LGG. As LGG by itself modified morpho-functional
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parameters up to 1 h-exposure, the effect of LGG on

LPS-induced SMC alterations was evaluated after 24 h

incubation. Lactobacillus rhamnosus GG, which per

se did not modify the phosphorylation of p65 NFjB
subunits Ser468 and Ser536, was able to hinder LPS-

induced NFjB activation up to 83.8% � 3.9 for Ser468

and 85.7% � 4.3 for Ser536 (Fig. 3A and B). Further-

more, LPS-induced increased secretion of IL6

(668.7% � 12.3) and parallel decreased secretion of

IL10 (�42.1% � 2.3) were counteracted by LGG

(Fig. 3C and D). Finally, as far as morpho-functional

alterations were concerned, cell shortening and inhi-

bition of acetylcholine-induced maximal contraction

observed after a 24 h-exposure of SMC to LPS were

significantly reduced in the presence of LGG

(26.1 � 2.6% and 44.9 � 5.5%, respectively, Fig. 3E

and F). In fact, LPS-induced cell shortening was

reversed by 59.9 � 6.2% whereas inhibition of con-

traction by 89.0 � 10.9%. These long-lasting LGG

effects were coupled to a decrease in surface expression

of TLR2 (MFI: resting cells 9.3 � 2.3; 24 h-LGG

exposed cells 6.2 � 1.9) suggesting the occurrence of

a persistent interaction of LGG with TLR2 receptors.

To evaluate the possible anti-inflammatory effects of

LGG-derived factors released during culture, SMC

were exposed for 24 h to LPS in the presence or

absence of cell-free supernatants harvested from LGG

culture (S-LGG). Similar to LGG, supernatants per se

did not modify the phosphorylation of p65 NFjB
subunits Ser468 and Ser536 but were able to counteract

LPS and to restore NFjB subunits phosphorylation at

control levels (Fig. 4A). In parallel, supernatants were

able to neutralize LPS-induced alterations of IL6 and

IL10 secretions (Fig. 4B) and to restore cell length and

contraction (Fig. 4C). The effects of LGG supernatants

occurred through the interaction with TLR2 as, similar

to LGG, surface expression of TLR2 was significantly

decreased in cells exposed to supernatants (MFI: resting

cells 9.4 � 1.3; S-LGG: 6.9 � 0.6) (Fig. 4D).

DISCUSSION

This study suggests that both LGG and its superna-

tants directly affect human colonic smooth muscle

through the direct activation of the Gram-positive

sensing TLRs. The outcome was different depending

on exposure times. Initially, LGG induced transitory

myogenic changes with alterations in morpho-func-

tional parameters, either in the whole muscle tissue or

in isolated cells. Afterwards, it activated an intrinsic

myogenic response that was apt to counteract pro-

inflammatory burst protecting human gastrointestinal

smooth muscle from pathogen LPS-induced damage.

These latter effects were also mimicked by LGG
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muscle cells were incubated for 24 h with
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culture supernatants, suggesting that probiotic-derived

factors might exert an anti-inflammatory activity,

opening new therapeutic strategies for bacterial-related

intestinal motor disorders.

The direct effect of LGG on human colonic muscle

was supported by several lines of evidence. Firstly,

similar expression levels either of TLR2 or of its two

heterodimers, namely TLR1 and TLR6, were observed

in human colonic SMC. On the other hand, cell surface

expression of TLR2 decreased when human SMC

were exposed to LGG. The absence of available recep-

tors for monoclonal anti-TLR2 binding indirectly

substantiated the interaction of LGG with membrane

receptors. The observed decrease of TLR2 expression

on SMC following LGG might indicate that the

binding of LGG to TLR2 could ‘conceal’ the immuno-

genic epitope recognized by the specific antibody but,

also, a down-modulation of TLR2 surface expression.

This could be due to the internalization of receptor/

ligand association as a consequence of receptor recy-

cling mechanism. Secondly, evidence for a direct

action of LGG on colonic muscle came from the

dose-dependency of LGG effects detected on both

isolated SMC and intact tissue. This led to an increase

in spontaneous contraction in muscle strips, likely

related to the cell-length shortening observed at cellu-

lar level, and to the inhibition of the contractile

response induced by the muscarinic agonist acetylcho-

line. The increased contraction on ileal strips in

guinea-pig3 and the accelerated ileal transit in germ-

free rats9 induced by different species of Lactobacillus

previously reported can then be ascribed to probiotics

effects on enteric muscle. Besides, the use of primary

human SMC culture has allowed to demonstrate that

LGG could influence muscular activity in a reversible

manner. Indeed LGG-induced morpho-functional

smooth muscle modifications lasted less than 24 h,

despite the continuous presence of LGG, out of

keeping with what previously observed with LPS on

human colonic SMC.26 These dual, time-dependent

effects have previously been observed exposing human

SMC to TLR2 synthetic ligands (namely synthetic

diacetylated and triacetylated lipopeptides, PAM2- and

PAM3-CSKA) that bind, respectively, the heterodimers

TLR2/TLR6 and TLR2/TLR111 indicating their depen-

dency on TLR2 activation. The prolonged activation of

TLR2 by LGG, as indicated by the persistent decrease

in their cell surface expression at 24 h, likely activates
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histogram: negative control; full light gray histogram: untreated control cells; empty black histogram: cells incubated with S-LGG.
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the anti-inflammatory PI3K/AKT signaling pathway

that is known to be responsible of the beneficial effects

of TLR2 ligands through the time-dependent regulation

of the NFjB pathway on both mice cardiac cells13 and

rabbit colonic smooth muscle.33 Indeed TLR2, beyond

the MyD88 binding motif, shared with all the others

TLRs receptors, contains a PI3K binding motif, also

present in TLR1 and TLR6 but missing in other

TLRs,34 that activates this cascade.35

Onward, LGG protected human SMC from LPS-

induced damage and this likely occurred through

LGG binding to TLR2 whose activation leads to

IL10-mediated anti-inflammatory effects. IL10 is a

major immunosuppressive and anti-inflammatory fac-

tor, essential for the homeostatic control of infection

and inflammation.36 Its release by peripheral blood

mononuclear cell levels is reduced in irritable bowel

syndrome patients and reverted to levels observed in

healthy volunteers after probiotic administration.37

Preventive effects on LPS-induced damage have already

been reported either for different Lactobacillus spe-

cies19,22 or for TLR2 activation.13,38 Toll-like receptor 2

is a potent IL-10 inducer, through which it abolishes

chronic inflammation by modulating cell signaling

associated with TLRs in epithelial and dendritic

cells.39,40 In human SMC, protection exerted by LGG

against LPS-induced damage occurred through the inhi-

bition of both NFjB subunits phosphorylation and pro-

inflammatory cytokine IL6 secretion upon activation of

surface TLR2 whose expression was reduced after LGG

exposure. Similar down-regulation of pro-inflammatory

cytokine release by Lactobacilli has been previously

reported in human intestinal dendritic cells challenged

with Salmonella41 and in human peripheral blood

monocytes-derived macrophages primed by LPS.42 It is

then likely that also in human colonic SMC, TLR2

receptor, upon its activation by LGG and derived

products, might counteract LPS-induced morpho-func-

tional myogenic alterations. In agreement with the

present data are the observation that L. paracasei nor-

malizedmuscle hypercontractility in amurinemodel of

postinfective gut dysfunction.1 Evaluation of protective

effect of probiotics might be a powerful tool for the

screening probiotic strains of possible use in human

health.43 Furthermore, it would be also worthwhile to

assess if, similar to antioxidants,26 LGG protective

effects persist even if administered after LPS exposure.

Finally, it has to be noted that LGG myogenic

antipathogenic effects might be mediated by LGG-

derived factors as protective effects against LPS-

induced damage were also observed in SMC exposed

to the sole LGG culture supernatants. Again, these

effects occurred through interaction with membrane

TLR2 receptors. Similar TLR-mediated anti-inflam-

matory effects have been reported for cell-free culture

supernatants of L. paracasei41 and Bifidobacterium

breve44 on human dendritic cells challenged with

Salmonella typhi. The beneficial effects of probiotic-

derived factors have been less documented than that

of probiotics. Only in the recent years some studies,

dealing with their beneficial properties against path-

ogen-induced inflammation and related alteration of

cytokine release, have been carried out.24 The identi-

fication of probiotic biofactors with beneficial effects

could disclose new therapeutic strategies for a wide

range of digestive diseases, avoiding risks related to

the administration of live bacteria. In the meanwhile,

the potential therapeutic value of probiotics in func-

tional gut disorders and the evidence that motor and

neural apparatus represent a potential target for

probiotics in gut postinfective disorders has already

been suggested by studies carried out in animal

models.27

In conclusion, this study provides novel insights

about the possibility that LGG could reduce the risk of

progression to a postinfective disorder by interfering

with the inflammatory reaction triggered by infection.

In fact, LGG and its secreted products seem to be able

to directly protect human colonic smooth muscle from

LPS-induced myogenic damage through the interaction

with TLR2. These results can provide a rational design

for clinical studies in which the efficacy of probiotics

in bacterial-related gut motor disorders could ulti-

mately be determined.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Figure S1. Individual evolution of short-term (30 min) dose-dependent LGG effects on cell length (A) and

acetylcholine (Ach)-induced contraction (B) of human colonic smooth muscle cells.

Figure S2. Individual evolution of time-dependent LGG (120 9 106 CFU/mL) effects on cell length (A) and

acetylcholine (Ach)-induced contraction (B) of human colonic smooth muscle cells.

Figure S3. Representative tracings of human smooth muscle strips before and after LGG exposure.
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