Sintesi di 7,8-dimetossi-1,4-benzodiazepine

Franco GATTA, Rodolfo LANDI VITTORY, GRACIELA NUÑEZ BARRIOS (*)
e Mauro TOMASSETTI (*)

Laboratori di Chimica Terapeutica

Riassunto. — Viene descritta la sintesi di alcune 7,8-dimetossi-1-etil-1,2,3,4,-tetraidro-5H-1,4-benzodiazepine-4-sostituite ottenute, con la reazione di Mannich, dalle 3,4-dimetossi-N-etil-N-(2-alchil-amminoetil)-aniline.

Queste benzodiazepine possono anche essere preparate con la reazione di Schmidt dal 6,7-dimetossi-N-etil-2,3-diidro-4-chinolone.

Summary (Synthesis of 7,8-dimethoxy-1,4-benzodiazepines). — The synthesis of some 4-substituted 7,8-dimethoxy-1-ethyl-1,2,3,4,-tetrahydro-5H-1,4-benzodiazepines, prepared through the Mannich reaction from 3,4-dimethoxy-N-ethyl-N-(2-alkyl-aminoethyl)-anilines, is here with described.

The same benzodiazepines are alternatively prepared by Schmidt reaction using 6,7-dimethoxy-N-ethyl-2,3-dihydroquinolin-4-ones as starting material.

Gli anelli eterociclici a sette termini ed in particolare le benzodiazepine, hanno assunto in questi ultimi anni una notevole importanza farmacologica per la loro azione sul s.n.c. Alcune 1,4-benzodiazepine, infatti, sono attualmente impiegate nella moderna terapia come psicofarmaci (Childress & Gluckman, 1964).

Queste premesse ci hanno indotto a studiare una nuova via di sintesi per preparare, con la reazione di Mannich, alcune 7,8-dimetossi-1,4-benzodiazepine, al fine di saggiarne un'eventuale attività farmacologica.

Come prodotto di partenza abbiamo utilizzato la N-etil-3,4-dimetossianilina [1] per la facilità e l'alta resa con cui si ottiene (Moir & Purves, 1948). Per condensazione con il 2-cloroetanolo e successiva bromurazione con tribromuro di fosforo, si ottiene la N-etil-N-(2-bromoetil)-3,4-dimetossianilina [2] che, per trattamento con ammine alifatiche, dà le corrispondenti diammine [3].

^(*) Borsista presso i Laboratori di Chimica Terapeutica.

Con la reazione di Mannich, con formaldeide in nitrometano, i composti [3] ciclizzano facilmente a 7,8-dimetossi-1-etil-1,2,3,4-tetraidro-5H-1,4-benzo-diazepine-4-sostituite [4] (Tab. 1). Il termine non sostituito, [4a] (R = H) si ottiene, oltre che per idrogenolisi con carbone palladiato del benzilderivato [4h], anche per riduzione con idruro di litio ed alluminio del 7,8-dimetossi-1-etil-1,2,3,4-tetraidro-5H-1,4-benzodiazepin-5-one [6]. Tale prodotto si forma,

TABELLA 1

assieme all'isomero 1,5-benzodiazepin-4-one [7], con la reazione di Schmidt, per azione dell'acido azotidrico sull'N-etil-6-7-dimetossi-2,3-diidro-chinolin-4-one [5], con il metodo descritto in una precedente nota (MISITI, GATTA & LANDI VITTORY, 1971) (Tab. 2).

Le caratteristiche spettroscopiche di r.m.n. dei prodotti più interessanti, sono riportate nella parte sperimentale. Le prove farmacologiche di queste diazepine sono in corso di esecuzione e di esse si tratterà in una nota successiva.

PARTE SPERIMENTALE

(in coll. con il Sig. L. Seneca)

N-etil-N-(2-bromoetil)-3,4-dimetossianilina [2].

a) g 18 (0,1 moli) di N-etil-3,4-dimetossianilina [1] e g 8 (0,1 moli) di 2-cloroetanolo si riscaldano a 100° per 15 ore. Al termine della reazione si sospende il prodotto in acqua, si alcalinizza con idrato sodico all'8 % e si estrae con etere. Dopo evaporazione del solvente si ottiene la N-etil-N-(2-

idrossietil)-3,4-dimetossianilina che bolle a 110-115º/0,002 mm; $n_D^{23\circ} = 1,5580$ (g 18,3 81 %). Il composto ha dato all'analisi:

TABELLA 2

b) g 13,5 (0,65 moli) di tribromuro di fosforo si aggiungono, goccia a goccia, ad una soluzione di g 11,2 (0,05 moli) di N-etil-N-(2-idrossietil)-3,4-dimetossianilina in 100 ml di tetracloruro di carbonio. Si lascia a sè per 2-3 ore, quindi si riscalda a ricadere per 1 ora. Dopo evaporazione del solvente, si aggiunge acqua, si alcalinizza con idrato sodico all'8% e si estrae con cloroformio. Il composto è un ofio vischioso, bolle a 115-1200/0,002 mm; $n_D^{23} = 1,5715$ (g 7,8 55%) e all'analisi ha dato:

trov. %: C 50,17; H 6,05; Br 28,01 per C₁₂H₁₈NO₂Br ealc. %: C 50,01; H 6,30; Br 27,73 N-etil-N-(2-alchilamminoetil)-3,4-dimetossianiline [3] b-i.

0.1 moli di [2]. 0.12 moli di ammina alifatica o arilalifatica e 0.1 moli di carbonato potassico anidro in 100 ml di toluene, si fanno bollire per 8 ore. Si porta a secco, si aggiunge acqua e si estrae con etere. I punti di ebollizione, le rese e le analisi sono riportati nella Tab. 3.

7,8-dimetossi-1-etil-1,2,3,4-tetraidro-5H-1,4-benzodiazepine [4] b-i.

0,1 moli del cloridrato delle diammine [3], preparato in situ, si sciolgono in nitrometano e si riscaldano a ricadere con 0,15 moli di paraformaldeide per 4 ore. Si allontana il solvente, si aggiunge acqua e si estrac con etere; la fase acquosa, alcalinizzata con idrato sodico all'8%, si estrac con cloroformio. I prodotti sono degli olii densi che imbruniscono all'aria; alcuni di essi [4] b, c, d, f, h, i, con ioduro di metile in acetone, danno facilmente i corrispondenti iodometilati. Le caratteristiche chimico-fisiche, le rese e le analisi sono riportate nella Tab. 4.

N-etil-6,7-dimetossi-2,3-diidro-chinolin-4-one [5].

Si prepara, con una resa del 50 %, dalla N-etil-3,4-dimetossianilina [1], per reazione con il β-propiolattone e successiva ciclizzazione con acido polifosforico, secondo il metodo generale di ATWAL et. al., 1965. Il composto, cristallizzato da acetato di etile, fonde a 128-1290 e ha dato all'analisi:

R.M.N. (8) CDCl₃: 7.35 s, 6.15 s (2H aromatici); 3,50t (=N-CH₂-) 2.70t (-CH₂-CO-).

7,8-dimetossi-1-etil-1,2,3,4-tetraidro-5H-1,4-benzodiazepin-5-one [6].
7,8-dimetossi-1-etil-1,2,3,5-tetraidro-4H-1,5-benzodiazepin-4-one [7].

Ad una soluzione di g 4 (0,017 moli) del chinolinone [5] in 40 ml di cloroformio si aggiungono 12 ml di acido solforico conc. e poi, poco a poco, in circa 1 ora, e sotto vigorosa agitazione, g 4 di sodio azide. La miscela di reazione si lascia a sè per due ore, si neutralizza con carbonato potassico conc., raffreddando con ghiaccio. Si estrae per due volte con cloroformio, si concentra e si cromatografa su colonna di gel di silice 0,05-0,2, eluendo con acetato di etile. Si ottengono in tal modo g 1,2 (28%) di [6], e g 2,3 (54%) di [7]. Il primo, cristallizzato da acetato di etile-cicloesano (1:1), fonde a 134-135%; il secondo, cristallizzato da acetato di etile, fonde a 163-164%, I composti hanno dato all'analisi:

_	_				-	_				
	9/	trov.	11,87	11,00	10,67	9,70	10,28	9,00	8,98	8,41
	% N	calc.	9,14 11,76 11,87	11,10 11,00	9,66 10,52	9,45	66'6	9,14	8,91	8,53
181		trov.	9,14	9,36	99'6	9,30	9,82	9,98	8,51	8,37
ANALISI	% н	calc.	9,31	6,59	9,84	9,52	10,01	9,87	8,34	8,59
		trov.	65,21	66,52	67,74	64,89	68,53 68,41 10,07	70,37	72,71	
	%3	calc.	65,51 65,21	66,63 66,52	67,63 67,74	64,83 64,89	68,53	70,55 70,37	72,58 72,71	73,13 73,34
	Formula bruta		C ₁₃ H ₂₂ N ₂ O ₂	$C_{14}H_{24}N_2O_2$	$C_{15}H_{27}N_{2}O_{2}$	C ₁₆ H ₂₈ N ₂ O ₃	C ₁₀ H ₂₈ N ₂ O ₂	C ₁₈ H ₃₀ N ₂ O ₂	C ₁₉ H ₂₆ N ₂ O ₂	C20H25N2O2
	Resa		62	19	11	80	78	74	7.0	82
	n o		1,5480/230	1,5410/230	1,5345/230	1,5325/230	1,5310/230	1,5440/230	1,5750/230	1,5700/230
	p. ch. / mm Hg		87- 920/0,002	85- 90°/0,002	95-1000/0,002	110-1130/0,002	105-1100/0,002	132-1350/0,002	130-1350/0,002	145-150°/0,002
	ж		-CHJ	-CH ₂ -CH ₃	-CH ₂ -CH ₃	-сн ₂ -сн ₂ -сн ₂ осн ₃	-СН2-СН2-СН3	\Diamond	-CH ₂	-CH _z -CH _z
	z,		3b	3c	34	3e	3f	50 50	3ћ	3i

		~
C2H5	Z	Z
	CH ₃ 0	снзо

								ANALISI	L 1 S 1		
ż	ĸ	p. eb./mm Hg (p.f.)	e a	Resu	Formula bruta	% 0		H %	20	Z	% %
						cale.	trov.	cale,	trov.	calc.	trov.
fa.	Ħ	92- 940 0,002	1,5675 270	€	C ₁₃ H ₂₆ N ₂ O ₂	20,99	66,07 66,26	8,53	8,62	11.86	11,60
	acetilderivato	155-1600 0,002	1,5625/230	84	C ₁₅ H ₂₂ N ₂ O ₃	64,72	64,72 64,54	7,97	8,10	10,07	16,6
44	-CH.	93-950/0,002	$1,5560/27^{o}$	39	CuH22N2O2	67,17	67,10	8,86	8,83	11,19	10.97
	iodometilato	(250-2520)			C,H,N,O,J	16.01	46.04 45.84	6,18	6,13	7,16	7.41
4e	-CH ₂ -CH ₃	90-930/0,002	1,5510/260	19	C13 H24 N2O2	68,15	96'19	9,15	9,16	10,60	10,46
	iodometilato	(207-2080)			CIGHT NOT	47,31	47,31 47,06	6.70	99'9	1	1
PH	-CH ₂ -CH ₂ -CH ₃	107-110/0,002	1,5461/230	69	C ₁₀ H ₂₆ N ₂ O ₂	69,03	68,78	9.41	9,38	10,06	10,10
	iodometilato	(194-1960)			Cr.H. N.O.J	48,58	48,69	6.93	7,03	1	1
4e	-СН ₂ -СН ₂ -СН ₂ -ОСН,	128-1310-0,002	1,5410,290	89	CpH NOO3	66.20	65,95	9,15	9,12	9,08	8,87
46	-CH ₂ -CH ₂ -CH ₃	109-1120 0,002	1,5410 230	72	C1: H28 N202	69,82	69.69	9,61	9,81	8.97	8,96
	iodometilato	(158-1590)			$C_{1S}H_{31}N_2O_3J$	49,77	19.61	7,19	7,21	1)
÷.	0	140-145° 0,002	1,5590.240	2.0	$C_{19}H_{30}N_2O_2$	71.66	71,66 71.53	9,50	9.30	9,26	9.41
44	-CH ₂	135-1400/0.002	1,5892 230	2	$C_{20}H_{26}N_2O_2$	73,59	73,59 73,64	8,03	8,05	8,59	8,58
41	iodometilato	(201-2050)			$C_{21}H_{29}N_2O_2J$	53,85	53,95	6,25	6,18	1	Ī
	-CH ₂ -CH ₂ -	148-1520 0,002	1,5771 280	92	$C_{21}H_{28}N_2O_2$	71,08	74,08 73,77	8,29	8,32	8,23	8.00
	iodometilato	(215-216°)			Carlan NaOal	54,78	51,78 51,87	6,48	6,40	5,81	5,77

(*) Vedi parte sperimentale.

N.M.R. (δ) CDCl₃: [6] 7,75s (-NH-); 7,28s 6,46s (2H aromatici); 3,26m (- $\frac{CH_2}{CH_2}$ -). [7] 8,55s (-NH-); 6,60s (2H aromatici); 3,47t (- $\frac{CH_2}{CH_2}$ -): 2,45t (- $\frac{CH_2}{CO}$ -).

7,8-dimetossi-1-etil-1,2,3,4-tetraidro-5H-1,4-benzodiazepina [4a] .

- a) g 5 (0,02 moli) di [6] in 200 ml di etere anidro si riscaldano a ricadere per 12 ore con g 1,9 (0,05 moli) di idruro di litio ed alluminio. Dopo raffreddamento si decompone il complesso, si filtra e si concentra. Si ottengono g 3,3 (72%) di [4a]. Le caratteristiche e le analisi sono riportate nella Tab. 4.
- N.M.R. (δ) CDCl₃: 6,7s 6,58s (2H aromatici); 3,92s (-CH₂-benzilico); 2,99m (=N-CH₂-CH₂-N=); 1,43s (-NH-).
- b) g 6,5 (0,02 moli) di [4h] in 100 ml di etanolo si idrogenano con g 1 di carbone palladiato al 10 %, a 60° e a 5 atm, fino a completo assorbimento della quantità calcolata di idrogeno. Si filtra il catalizzatore e si allontana il solvente.

Resa g 2,8 (62 %).

7,8-dimetossi-1-etil-1,2,3,5-tetraidro-4H-1,5-benzodiazepina [8] .

g 5 (0,02 moli) di [7] si riducono con idruro di litio ed alluminio nelle medesime condizioni descritte per [4a]. Si ottengono g 3,9 (82 %) di un olio che distilla a $112-115^{\circ}/0,002$ mm; $n_{\rm D}^{27^{\circ}}=1,5798$; e che ha dato all'analisi:

N.M.R. (δ) CDCl₃: 6,58s 6,33s (2H aromatici); 3,34s (-NH-); 3,05m (-CH₂-CH₂-CH₂-); 1,8m (-CH₂-CH₂-CH₂-).

I punti di fusione sono stati determinati con un apparecchio di Kosler a piastra riscaldante e non sono corretti. Gli spettri r.m.n. sono stati registrati con uno spettrometro VARIAN-T60, usando TMS come standard interno.

Ringraziamo la Prof. M. Marzadro per le microanalisi.

Ricevuto il 5 agosto 1971.

Accettato il 30 agosto 1971.

BIBLIOGRAFIA

ATWAL, M. S., L. BAUER, S. N. DIXIT, J. E. GEARIEN & R. W. MORRIS, 1965. J. Med. Chem., 8, 566.

CHILDRESS, S. J. & M. I. GLUCKMAN, 1964. J. Pharm. Sci., 53, 577 e ref. citate.

MISITI, D., F. GATTA & R. LANDI VITTORY, 1971. J. Heterocyclic Chem., 8, 231.

Moir, R. Y. & C. B. Purves, 1948. Can. J. Res., 26 B, 694.