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Abstract: Information about the effects of phthalates and non-phthalate substitute cyclohexane-1,2-
dicarboxylic acid diisononyl ester (HEXAMOLL® DINCH) on children’s neurodevelopment is limited.
The aim of the present research is to evaluate the association between phthalate/HEXAMOLL®

DINCH exposure and child neurodevelopment in three European cohorts involved in HBM4EU
Aligned Studies. Participating subjects were school-aged children belonging to the Northern Adriatic
cohort II (NAC-II), Italy, Odense Child Cohort (OCC), Denmark, and PCB cohort, Slovakia. In
each cohort, children’s neurodevelopment was assessed through the Full-Scale Intelligence Quotient
score (FSIQ) of the Wechsler Intelligence Scale of Children test using three different editions. The
children’s urine samples, collected for one point in time concurrently with the neurodevelopmental
evaluation, were analyzed for several phthalates/HEXAMOLL® DINCH biomarkers. The relation
between phthalates/HEXAMOLL® DINCH and FSIQ was explored by applying separate multiple
linear regressions in each cohort. The means and standard deviations of FSIQ were 109 ± 11 (NAC-
II), 98 ± 12 (OCC), and 81 ± 15 (PCB cohort). In NAC-II, direct associations between FSIQ and
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DEHP’s biomarkers were found: 5OH-MEHP+5oxo-MEHP (β = 2.56; 95% CI 0.58–4.55; N = 270),
5OH-MEHP+5cx-MEPP (β = 2.48; 95% CI 0.47–4.49; N = 270) and 5OH-MEHP (β = 2.58; 95% CI
0.65–4.51; N = 270). On the contrary, in the OCC the relation between DEHP’s biomarkers and FSIQ
tended to be inverse but imprecise (p-value ≥ 0.10). No associations were found in the PCB cohort.
FSIQ was not associated with HEXAMOLL® DINCH in any cohort. In conclusion, these results do
not provide evidence of an association between concurrent phthalate/DINCHHEXAMOLLR DINCH
exposure and IQ in children.

Keywords: human biomonitoring; children; phthalates; HEXAMOLL® DINCH; neurodevelopment;
WISC; Full-Scale Intelligence Quotient; environmental contaminants; aligned studies; HBM4EU

1. Introduction

Evidence of the presence of environmental contaminants in human samples is in-
creasing. Phthalates and their substitute cyclohexane-1,2-dicarboxylic acid diisononyl
ester (HEXAMOLL® DINCH), a group of non-persistent chemicals [1,2], have been found
ubiquitously [3–8] in human samples due to their common use as plasticizers in polymers
like polyvinylchloride (PVC) resins, components of personal care products, constituents
of food contact materials and medical devices [2,9–12]. Human exposure to the substitute
HEXAMOLL® DINCH has increased significantly in the last years [13–15] and has been
shown to have disruptive thyroid system properties in pregnant women [16].

Routes of exposure to phthalates and HEXAMOLL® DINCH are usually ingestion, in-
halation, and dermal contact [2,17]. Exposure to high molecular weight (HMW) phthalates,
including 2-ethylhexyl phthalate (DEHP), is primarily related to food consumption [18–21]
since these compounds are not chemically bound to food contact materials and can leach
into packaged foods. Low molecular weight (LMW) phthalates such as diethyl phthalate
(DEP), butylbenzyl phthalate (BBzP), di-n-butyl phthalate (DnBP), and di-iso-butyl ph-
thalate (DiBP) are commonly found in personal care products and house dust [20,22–24].
Phthalates and HEXAMOLL® DINCH urinary metabolites (either oxidized or not mo-
noesters) have been considered the most suitable biomarkers of exposure [2,25–27].

Except in some cases of DEP exposure [3,23,28–30], vulnerable subgroups of the
population, especially children, have been found to have higher urinary levels of phthalates
and HEXAMOLL® DINCH biomarkers than adults and adolescents [3,4,6,7,14,28,31], due
to their different phthalate oxidative metabolism [2], uptake patterns (hand-to-mouth
behavior), mouthing of plastic toys [19,32,33], chewing plastic child products, and lower
body weight [4,24,28,34,35]. According to the hypothesis of the developmental origin of
health and diseases [36], an increasing number of scientific observations have shown that
exposure to environmental contaminants during pregnancy, infancy, and early childhood
could be a risk factor for diseases that are diagnosed in adulthood.

Due to their reprotoxic and endocrine-disrupting properties, the commercialization in
the European Union of DEHP, BBzP, DiBP, and DnBP is strictly regulated. The activation
of nuclear receptors like peroxisome proliferator-activated receptors (PPARα and PPARγ)
and glucocorticoid receptors by phthalates may initiate events leading to several adverse
health outcomes [37].

Epidemiological studies on the association between pre- and/or postnatal phthalate ex-
posure and health effects are increasingly calling attention to issues related to reproductive
function, allergies and asthma, cardiometabolic diseases, and thyroid function [38–42].

Some epidemiological investigations and reviews have also shown positive associa-
tions between pre- and/or postnatal exposure and adverse neurodevelopmental func-
tion [43–46]. However, the overall evidence on the association between phthalates/
HEXAMOLL® DINCH metabolites and child neurodevelopment is limited. Lee et al. [47]
showed an inverse association between postnatal exposure to DEHP and cognitive function.
Indeed, cognitive functions together with several brain areas continue to develop during



Toxics 2022, 10, 538 3 of 20

childhood [48]. Sex-specific associations were reported between BBzP and decreased motor
abilities in females [49]. It is worth noting that only a few cohorts have been primarily
established to study the association between phthalate metabolites and neurodevelopmen-
tal outcomes, and studies on the links between HEXAMOLL® DINCH and neurological
development in children have not been conducted yet.

In 2016 the “European Human Biomonitoring Initiative” (HBM4EU) [50] was launched
in 30 countries and the European Environment Agency with the aim to improve chemical
safety, creating a European network that improves knowledge thanks to harmonization,
planning, and implementation of human biomonitoring (HBM) studies, as well as har-
monized sampling and data analysis across national borders. Plasticizers, like phthalates
and their substituent HEXAMOLL® DINCH, have been identified by European Union
(EU) services and HBM4EU partners as priority substances for chemical policy at the EU
level [51], for which open policy-relevant questions still had to be answered.

This research aims to evaluate the association between child neurodevelopment, mea-
sured by the Wechsler Intelligence Scale for Children (WISC), and phthalate/HEXAMOLL®

DINCH exposure measured in children’s urine in three European cohorts involved in
the HBM4EU Aligned Studies [52,53]. The latter is a survey aimed at collecting HBM
samples and data as harmonized as possible from national studies to derive current internal
exposure data or the European population/citizens across a geographic spread.

2. Materials and Methods
2.1. Data Source

European countries involved in the HBM4EU Aligned Studies that provided data
on the assessment for child neurodevelopment and the measurement of phthalates and
HEXAMOLL® DINCH exposure were: Italy (Department of Medicine, University of Udine:
Northern Adriatic Cohort II (NAC-II)) [54,55], Denmark (Odense University Hospital,
Odense Child Cohort (OCC)) [56,57], and Slovakia (Department of Environmental Medicine,
Faculty of Public Health, Slovak Medical University: PCB cohort) [58,59]. Participating
subjects were 7-year-old children belonging to the NAC-II and OCC and 11-year-old
children in the PCB cohort. The total number of subjects in the original studies was
487 for the NAC-II, 2449 for the OCC, and 415 for the PCB cohort. The selection of the
300 participants of each cohort was performed following a step-wise selection procedure
described in Gilles et al., 2022 [53].

Informed consent was obtained from all participant’s caregivers involved in the study.
The study was conducted according to the Declaration of Helsinki. Research protocols
of the three cohorts were approved by their respective ethics committees (NAC-II: Ethics
Committee of the Institute for Maternal and Child Health IRCCS “Burlo Garofolo” (CE/V-
70-05/02/2007; CE/V-109-12/04/2010; IRB-BURLO 01/2020 25/03/2020); PCB cohort:
Ethics Committee of the Slovak Medical University from 18 November 2013; OCC: Regional
Scientific Ethical Review Committee for Southern Denmark (Project ID S-20090130) and the
Danish Data Protection Agency (j.no. 18/33119)).

2.2. Study Outcome

In the three cohorts, the neurodevelopment of children was assessed by trained
psychologists using the WISC test [60]. Different editions of the WISC test were used in the
three cohorts: the 3rd in the PCB cohort [61], the 4th in the NAC-II [62], and the 5th in the
OCC [63]. The three editions of the WISC test assess and measure different aspects of the
child’s neurodevelopment providing for each edition different index scores, which when
combined, yield the Full-Scale Intelligence Quotient (FSIQ). A brief description of scores
obtained from the three editions of WISC and of the method of computation is included in
the Supplemental Materials (Table S1).

We considered the outcome as the measure of the child’s overall cognitive ability, i.e.,
the FSIQ score. The FSIQ score ranged from 40 to 160 and was set to have a mean of 100 and
a standard deviation of 15 based on Italian, Slovak, or Danish population-based reference
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data (standard population). A higher FSIQ score should be interpreted as a better child’s
neurodevelopment performance, although no clinical diagnosis can be made according to
any low or very low FSIQ score.

2.3. Exposure

Concurrently with the outcome evaluation, exposure assessment was conducted
by analyzing DiBP, DnBP, BBzP, DEP, DEHP, and HEXAMOLL® DINCH metabolites in
urinary samples. The following biomarkers of exposure were measured in the children’s
urine: mono-isobutyl phthalate (MiBP) for DiBP, mono-n-butyl phthalate (MnBP) for
DnBP, mono-benzyl phthalate (MBzP) for BBzP, mono-ethyl phthalate (MEP) for DEP,
mono(2-ethyl-5-hydroxy-hexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-carboxy-pentyl)
phthalate (5cx-MEPP) and mono(2-ethyl-5-oxo-hexyl) phthalate (5oxo-MEHP) for DEHP
and cyclohexane-1,2-dicarboxylate-mono-(7-hydroxy-4-methyl)octyl ester (OH-MINCH),
and cyclohexane-1,2-dicarboxylate-mono-(7-carboxylate-4-methyl)heptyl ester (cx-MINCH)
for HEXAMOLL® DINCH.

2.4. Chemical Analysis

In the NAC-II between 2014 and 2016, 7-year-old children’s spot urine samples were
collected in a 50 mL tube (BD Falcon) and stored at −80 ◦C within 24 h of collection.

In the OCC between 2018 and 2019, 7-year-old children’s spot urine samples were
collected and stored at −80 ◦C until chemical analyses.

In the PCB cohort between 2014 and 2017, 11-year-old children’s spot urine samples
were collected in 50 mL polypropylene tubes and stored at −18 ◦C.

Urinary concentrations of phthalates (except for PCB cohort) and HEXAMOLL®

DINCH biomarkers were analyzed under the Quality Control/Quality Assurance (QA/QC)
program developed within HBM4EU [64,65] following protocols HBM4EU-SOP-QA-001
to 004 which are available through the HBM4EU website [50]. External quality control
was assured through successful participation in the External Quality Assessment Scheme
(EQUAS) for phthalates biomarkers in urine, organized by the Institute and Outpatient
Clinic of Occupational, Social and Environmental Medicine (IPASUM), Germany. EQUAS
was organized within the frame of HBM4EU as part of the Quality Assurance program for
biomonitoring analyses.

Urinary concentrations of phthalates biomarkers in the PCB cohort were analyzed
under the method certified by the quality assurance program (Intercomparison program
57, 2016 for occupational/environmental medical—toxicological analyses in biological
materials) organized by IPASUM.

2.4.1. Phthalates

All samples were analyzed in laboratories that participated and obtained successful
results in the HBM4EU program [64,65].

VITO—GOAL Laboratories (Belgium) analyzed the NAC-II urinary samples. After
defrosting, NAC-II urine samples were vortexed and sonicated for 5 min and then analyzed
following the methodology described by Servaes et al. [66]. Briefly, β-glucuronidase (from
Escherichia coli K-12) and 50 µL of corresponding internal standards (d4 and 13C isotope
labeled analogues for phthalate biomarkers) were added to 1 mL of sample buffered with
sodium acetate solution. After incubation at 37 ◦C for at least 2 h, 10 µL of the solution
was injected into an ultra-performance liquid chromatography-tandem mass spectrometer
(UPLC-MS) to detect the above-mentioned phthalate biomarkers. The phthalates’ biomark-
ers were separated on an Acquity UPLC BEH phenyl column (100 mm × 2.1 mm; 1.7 µm)
coupled to a Waters Xevo TQ-S tandem mass spectrometer, operating in the negative
electrospray ionization mode (ESI−).

The OCC’s urine sample analyses were conducted at the Department of Growth and
Reproduction, Copenhagen University Hospital—Rigshospitalet, Denmark (RegionH). The
phthalate biomarkers were analyzed by isotope diluted online-TurboFlow liquid chromatog-
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raphy mass spectrometry (LC-MS/MS) equipped with a probe for heated electrospray
ionization (HESI) running in negative mode and with prior enzymatic deconjugation. The
preceding enzymatic deconjugation of the biomarkers was done by arylsulfatase-free β-
glucuronidase (Escherichia coli K12). A detailed description of the analytical method has
previously been published [15]. Briefly, samples were analyzed in nine batches, all includ-
ing standards for calibration curves; three blanks, three un-spiked urine pool controls, and
three urine pool controls spiked with a mixture of native phthalate metabolite standards
in low and high concentration levels. The mean recovery was >88% for all biomarkers in
urine pool controls spiked in both levels, while the mean relative standard deviation (RSD)
was <11% for all biomarkers in urine controls spiked at a low level, except for MEP, MiBP,
and MnBP (<18%), and <6% for all biomarkers in urine controls spiked at high level.

Phthalates’ urinary biomarkers of the PCB cohort were measured in the Physiological
analytical laboratory Constantine the Philosopher University in Nitra, Slovakia. Urinary
concentration was determined by high-performance liquid chromatography (HPLC) and
tandem mass spectrometry.

Briefly, 1 mL of urine was thawed, buffered with ammonium acetate, spiked with
isotope-labeled phthalate standards, β-glucuronidase enzyme, and incubated at 37 ◦C. The
samples were then diluted with phosphate buffer (NaH2PO4 in H3PO4) and loaded on
solid-phase extraction (SPE) cartridges conditioned with acetonitrile followed by phosphate
buffer before extraction. To remove the hydrophilic compound, SPE cartridges were flushed
by formic acid and HPLC grade water. Elution of analytes was performed by acetonitrile
and ethylacetate. Eluate was dried with nitrogen gas and reconstituted with 200 µL of H2O
and acetonitrile (1:1). An Agilent Infinity 1260 liquid chromatograph equipped with EC
150 × 3 Nucleodur phenyl-hexyl columns was used for analysis. Separation was done
using a nonlinear gradient program of two mobile phases (acetonitrile and 0.1% acetic acid
in H2O). Agilent 6410 triplequad with electrospray ionization was used in the negative
mode for mass-specific detection of phthalate biomarkers. RSD was not higher than 11%
for all biomarkers in urine pool controls.

2.4.2. HEXAMOLL® DINCH

In the OCC, urine samples were analyzed at RegionH laboratories, while in the NAC-II
and PCB cohort, they were analyzed at the Department of Analytical Chemistry, Faculty of
Natural Sciences, Comenius University in Bratislava, Slovakia (UNIBA).

UNIBA determined cx-MINCH and OH-MINCH urinary concentrations after enzymatic
hydrolysis of their glucuronide conjugates by high-performance liquid chromatography-
tandem mass spectrometry (HPLC-MS/MS) with online SPE. Briefly, 300 µL aliquots of urine
samples were thawed and vortexed. Subsequently, 100 µL of ammonium acetate buffer
(pH 6), 10 µL of internal standards solution (d8 isotope labeled analogues for HEXAMOLL®

DINCH biomarkers, at a concentration of 2 mg/L) and 6 µL of β-glucuronidase solution
(from Escherichia coli K-12) were added. After vortexing and incubation at 37 ◦C for 2 h, 10 µL
of acetic acid was added and samples were frozen overnight (−20 ◦C) to cryoprecipitate
the proteins. After thawing and centrifugation (10 min, 10,000 rpm), 210 µL supernatant
was injected into a C-18 SPE column (20 mm × 4.6 mm, 3.5 µm) at isocratic elution of 90%
mobile phase A (water with 0.05% acetic acid) and 10% B (acetonitrile with 0.05% acetic acid)
for 5 min, then the flow was switched to the analytical column. Separation was performed
using Zorbax-SB C-18 column (150 mm × 2.1 mm; 3.5 µm), and gradient elution from 10% to
100% B. Thermo Fisher Scientific TSQ triple quadrupole mass spectrometer with a heated
electrospray ionization source operated in negative mode was used for measurements.

RegionH determined cx-MINCH and OH-MINCH concentrations in urine samples by
applying the same chemical analytical process described above for the phthalate biomarkers.

2.4.3. Creatinine

To account for urinary dilution, creatinine analysis was performed.
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In NAC-II and PCB cohorts, UNIBA determined the creatinine concentration (µg/L)
by flow injection analysis-tandem mass spectrometry (FIA-MS/MS). In the OCC, spec-
trophotometric determination of creatinine concentrations was conducted on a Konelab
20 Clinical Chemistry Analyzer, using a commercial kit (Thermo, Vantaa, Finland) at the
University of Southern Denmark (SDU) in the Environmental Medicine Laboratory.

2.5. Potential Confounders

Based on information obtained from the questionnaires applied in the different aligned
studies, variables were harmonized across the studies and data/variables needed for our
research were shared with the principal investigators of this manuscript [52,53].

Potential confounders in neurodevelopment were found through a literature review,
and those common to the three cohorts were the following: the highest education level
of the household of the child, body mass index (BMI) z-score, and sex of the child. The
level of education of the parents was based on the International Standard Classification of
Education (ISCED) developed by the United Nations Educational, Scientific, and Cultural
Organization (UNESCO) [67]. Individuals with no to lower secondary education are
included in the lower education level (ISCED 0–2), individuals with upper secondary to
post-secondary non-tertiary education represent the medium level (ISCED 3–4), and those
with tertiary and higher education are considered into the high education level (ISCED ≥5).
The highest education level of the household of the child corresponds to the higher level of
education between mother and father.

At urine sample collection, children’s height and weight were measured by healthcare
staff in each cohort. BMI (kg/m2) was calculated as the ratio between the weight (kg) and
the height squared (m2). BMI was converted into standardized World Health Organization
sex- and age-specific z-scores (BMI z-score) [68].

2.6. Statistical Analysis

The outcome variable (FSIQ score) was obtained from three different versions of the
WISC test, and for this reason, separate statistical analyses were conducted for each cohort.

To account for the fact that the study subjects belong to three different cohorts, where
three different versions of the WISC were used, we performed multilevel fixed-effect linear
regression analyses, adjusted for the highest education level of the household of the child,
child’s sex and BMI z-score. The Intraclass Correlation Coefficient (ICC) was estimated
and indicates how much of the total variation in FSIQ is accounted for by the cohorts. The
Akaike Information Criterion (AIC) was used to evaluate the model fitting and to select the
most appropriate model. Beta coefficient (β), 95% confidence interval (95% CI), and ICC
were reported. Separate models were applied for each biomarker.

In each cohort, the main characteristics of children and their families were described as
frequencies and percentages for categorical variables or as arithmetic means and standard
deviations (SD) for continuous variables.

The FSIQ score and creatinine concentrations were described as the arithmetic mean
and SD, median, 25th and 75th percentile. For phthalates and HEXAMOLL® DINCH
biomarker concentrations, the geometric mean and 95% CI, and 90th percentile were
also calculated (the Supplementary Materials also show the biomarker’s concentration
standardized for creatinine). Differences among cohorts for the highest education level of
the household of the child were assessed by the Chi-square test.

The difference in the means of FSIQ score among the three cohorts was assessed by
applying ANOVA with Bonferroni’s multiple comparison method.

Among biomarkers, several sum-parameters were determined, summing the single
biomarker’s concentrations as follows: 5OH-MEHP+5cx-MEPP and 5OH-MEHP+5oxo-
MEHP for DEHP, and OH-MINCH+cx-MINCH for HEXAMOLL® DINCH.

Pearson correlations between the FSIQ score and biomarkers (data not shown) and
BMI were calculated. ANOVA was applied to assess the mean differences in the FSIQ score
among the highest education level of the household of child and child’s sex.
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The relations between the FSIQ score and each phthalate/HEXAMOLL® DINCH
biomarker were explored, applying simple and multiple linear regressions adjusted for
the highest education level of the household of the child, child’s sex, and BMI z-score. β
and 95% CI of each multiple linear regression were presented in the forest plot grouped by
phthalates and HEXAMOLL® DINCH (in the Supplementary Material; Figures S2–S4 show
the forest plots grouped by cohort). Separate models were applied for each biomarker
in each cohort. Phthalates and HEXAMOLL® DINCH biomarker concentrations were
natural logarithm transformed because of their skewed distribution and standardized
according to child urine’s creatinine levels (µg/g creatinine) to account for urinary di-
lution. As sensitivity analyses, simple and multiple regression models were performed
considering the natural logarithm transformation of phthalates and HEXAMOLL® DINCH
biomarker concentrations without the creatinine standardization and the natural logarithm
transformation of the biomarkers 5OH-MEHP+5cx-MEPP, 5OH-MEHP+5oxo-MEHP, and
OH-MINCH+cx-MINCH expressed in molar unit standardized for creatinine.

SAS (version 9.4 SAS Institute Inc., Cary, NC, USA) and R software (package “an-
throplus” in R; R version 4.0.5, R Core Team (2021). R: A language and environment
for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/ (accessed on 30 June 2022) were used for the statistical analysis.

3. Results

For each cohort (NAC-II, OCC, and PCB cohorts), 300 children participated in the
study. Child and family characteristics of the three cohorts are reported in Table 1. Mean
values and SD of children’s age were 7.0 ± 0.2 in the NAC-II, 7.0 ± 0.2 in the OCC, and
11.1 ± 0.4 in the PCB cohort. The percentage distribution of the highest education level
of the household of the child were different among the three cohorts. The percentage of
children from a household with high education level was equal to 44.0%, 35.0%, and 15.0%,
respectively, in the NAC-II, OCC, and PCB cohort (Chi-square test p-value ≤ 0.05).

Table 1. Child and family characteristics in the NAC-II, OCC, and PCB cohorts.

Characteristics NAC-II OCC PCB Cohort

Child’s Sex, N (%):
Male 150 (50.0) 165 (55.0) 133 (44.3)

Female 150 (50.0) 135 (45.0) 167 (55.7)
Highest education level of the
household of the child, N (%):

Low education (ISCED 0–2) 26 (8.7) 41 (13.7) 16 (5.3)
Medium education (ISCED 3–4) 139 (46.3) 154 (51.3) 222 (74.0)

High education (ISCED ≥5) 132 (44.0) 105 (35.0) 45 (15.0)
Missing 3 (1.0) 0 (0.0) 17 (5.7)

Child’s BMI z-score, mean ± SD (N): 0.7 ± 1.2 (275) −0.1 ± 1.0 (294) 0.7 ± 1.3 (298)
Abbreviations: NAC-II, Northern Adriatic Cohort; OCC, Odense Child Cohort; ISCED, International Standard
Classification of Education; SD, standard deviation; BMI, body mass index.

The distribution of the FSIQ score is shown in Figure 1. The difference in means of the
FSIQ score among the three cohorts performing Bonferroni’s multiple comparisons method
were all statistically significant (p-value ≤ 0.05).

Urinary concentrations of phthalates and HEXAMOLL® DINCH biomarkers for each
cohort are reported in Table 2.

https://www.R-project.org/
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Figure 1. Frequency distribution of FSIQ score by cohort. Different WISC editions were used among
the cohorts: the 3rd in the PCB cohort, the 4th in the NAC-II, and the 5th in the OCC. Abbreviations:
FSIQ, Full-Scale Intelligence Quotient; NAC-II, Northern Adriatic Cohort; OCC, Odense Child Cohort;
SD, standard deviation.

Table 2. Urinary concentrations of phthalates and HEXAMOLL® DINCH biomarkers in the NAC-II,
OCC, and PCB cohorts.

Biomarkers of Exposure N
Geometric

Mean
(95% CI)

25th Percentile Median 75th Percentile 90th Percentile

Phthalates (µg/L)

MiBP:
NAC-II 299 29.6 (26.9–32.4) 18.6 31.9 49.8 74.1

OCC 300 12.2 (11.1–13.4) 7.2 12.4 19.2 37.4
PCB cohort 295 59.7 (53.6–66.4) 32.4 59.1 110.1 183.4

MnBP:
NAC-II 297 19.0 (17.2–21.0) 11.0 19.1 32.1 57

OCC 300 12.1 (11.1–13.3) 7.2 12.7 20.0 29.6
PCB cohort 296 75.3 (68.9–82.3) 45.0 74.8 128.1 213.0

MBzP:
NAC-II 299 5.6 (5.0–6.3) 2.8 5.9 10.8 21.3

OCC 297 1.3 (1.1–1.4) 0.6 1.2 2.6 5.1
PCB cohort 287 3.5 (3.0–4.1) 1.0 5.0 10.1 13.8
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Table 2. Cont.

Biomarkers of Exposure N
Geometric

Mean
(95% CI)

25th Percentile Median 75th Percentile 90th Percentile

MEP:
NAC-II 300 59.1 (52.0–67.2) 27.8 55.5 115.5 222.2

OCC 294 7.2 (6.5–7.9) 4.2 6.7 11.8 19.3
PCB cohort 295 34.6 (30.4–39.4) 14.8 30.3 67.4 154.2

5OH-MEHP:
NAC-II 299 17.3 (15.8–18.9) 10.6 17.4 27.1 46.3

OCC 300 4.8 (4.3–5.3) 2.9 5.0 7.6 12.4
PCB cohort c 296 24.9 (23.0–26.9) 17.0 25.3 38.6 57.4

5cx-MEPP:
NAC-II 299 21.3 (19.4–23.3) 12.4 21.7 38.3 53.1

OCC 300 6.9 (6.3–7.5) 4.3 6.6 10.8 37.4
PCB cohort 296 34.4 (31.7–37.3) 22.4 35.0 53.8 81.2

5oxo-MEHP:
NAC-II 299 8.8 (8.0–9.6) 5.4 8.9 14.6 23.7

OCC 300 3.3 (3.0–3.7) 2.0 3.4 5.5 8.8
PCB cohort 296 21.5 (20.0–23.3) 15.1 21.3 32.8 46.8

5OH-MEHP+5oxo-
MEHP:
NAC-II 299 26.5 (24.3–28.9) 15.9 27.0 42.2 65.4

OCC 300 8.1 (7.4–8.9) 5.0 8.5 12.8 21.6
PCB cohort 296 46.8 (43.4–50.5) 31.5 47.6 70.4 102.0

5OH-MEHP+5cx-MEPP:
NAC-II 299 39.5 (36.1–43.1) 23.2 40.3 64.4 95.1

OCC 300 11.8 (10.8–12.9) 7.5 11.6 18.0 28.3
PCB cohort 296 59.8 (55.3–64.7) 39.4 61.4 94.2 142.1

HEXAMOLL® DINCH
(µg/L)

OH-MINCH:
NAC-II 300 3.6 (3.2–4.1) 1.8 3.3 6.1 15.8

OCC 300 3.2 (2.8–3.7) 1.5 3.0 6.5 13.0
PCB cohort 300 2.3 (2.0–2.6) 1.2 2.0 4.1 9.0

cx-MINCH:
NAC-II 300 2.3 (2.0–2.6) 1.1 2.0 3.8 8.8

OCC 300 2.1 (1.9–2.4) 1.1 1.7 4.1 9.4
PCB cohort 299 1.1 (1.0–1.3) 0.5 1.1 2.0 4.4

OH-MINCH+cx-MINCH:
NAC-II 300 6.0 (5.3–6.8) 3.0 5.3 9.9 25.2

OCC 300 5.5 (4.8–6.2) 2.7 4.9 10.4 22.8
PCB cohort 300 3.4 (3.0–3.9) 1.8 3.1 6.0 14.2

Abbreviations: 95% CI, 95% confidence interval; MiBP, mono-isobutyl phthalate; MnBP, mono-n-butyl phtha-
late; MBzP, mono-benzyl phthalate; MEP, mono-ethyl phthalate; 5OH-MEHP, mono(2-ethyl-5-hydroxy-hexyl)
phthalate; 5cx-MEPP, mono(2-ethyl-5-carboxy-pentyl) phthalate; 5oxo-MEHP, mono(2-ethyl-5-oxo-hexyl) ph-
thalate; HEXAMOLL® DINCH, cyclohexane-1,2-dicarboxylic acid diisononyl ester; OH-MINCH, cyclohexane-
1,2-dicarboxylate-mono-(7-hydroxy-4-methyl)octyl ester; cx-MINCH, cyclohexane-1,2-dicarboxylate-mono-(7-
carboxylate-4-methyl)heptyl ester.

Urinary concentrations of phthalates and HEXAMOLL® DINCH biomarkers ex-
pressed as µg/g creatinine and creatinine concentrations (g/L) for all cohorts are reported
in Supplementary Table S2.

As displayed in Table 3, in each cohort, the FSIQ score increased with the increasing
education level of the household of the child, whereas the means of FSIQ score did not vary
by child’s sex (p-value ≤ 0.05). The FSIQ score was directly correlated with BMI z-score
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in the PCB cohort (r = 0.16, p-value ≤ 0.05), inversely correlated in the NAC-II (r = −0.14,
p-value ≤ 0.05) and not correlated in the OCC cohort (r = 0.03, p-value = 0.56).

Table 3. Distribution (mean ± SD) of FSIQ score by potential confounders in the NAC-II, OCC, and
PCB cohorts.

FSIQ Score

Characteristics NAC-II p-Value OCC p-Value PCB Cohort p-Value

Highest education level of the
household of child, mean ± SD:

Low education (ISCED 0–2) 103 ± 10 <0.01 a 95 ± 14 0.19 a 56 ± 9 <0.01 a

Medium education (ISCED 3–4) 108 ± 11 98 ± 12 81 ± 13
High education (ISCED ≥5) 112 ± 10 100 ± 11 91 ± 16

Child’s sex, mean ± SD:
Male 109 ± 11 0.77 a 97 ± 12 0.06 a 79 ± 16 0.09 a

Female 109 ± 10 100 ± 12 82 ± 15
a ANOVA was applied.

The results of the multilevel fixed-effect linear regression models are shown in Table S3.
Figure 2 shows the association between the FSIQ score and the natural logarithm of phtha-
lates biomarkers standardized for creatinine and adjusted for potential confounders. Crude
and adjusted β and 95% CI of all linear regression models are reported in Supplementary
Table S4. Among NAC-II children, FSIQ scores were directly associated with the following
DEHP biomarkers: 5OH-MEHP (β = 2.58; 95% CI 0.65–4.51), 5OH-MEHP+5oxo-MEHP
(β = 2.56; 95% CI 0.58–4.55), and 5OH-MEHP+5cx-MEPP (β = 2.48; 95% CI 0.47–4.49).
Moreover, FSIQ score increased, albeit not significantly, at somewhat higher concentrations
of 5oxo-MEHP (β = 1.83; 95% CI −0.11–3.78; p-value = 0.06) and 5cx-MEPP (β = 1.88; 95%
CI −0.04–3.80; p-value = 0.06).
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In the OCC cohort, associations tend to be inverse, but imprecise, between FSIQ score
and 5OH-MEHP (β = −1.51; 95% CI −3.29–0.27; p-value = 0.10), 5OH-MEHP+5oxo-MEHP
(β = −1.53; 95% CI −3.32–0.27; p-value = 0.10), 5OH-MEHP+5cx-MEPP (β = −1.58; 95% CI
−3.50–0.35; p-value = 0.11), 5oxo-MEHP (β = −1.53; 95% CI −3.33–0.27; p-value = 0.10), and
5cx-MEPP (β = −1.49; 95% CI −3.43–0.45; p-value = 0.13). In the PCB cohort, no significant
associations were found for the same biomarkers.

No significant associations were found between the FSIQ score and the remaining
biomarkers of phthalates.

After adjusting for potential confounders, the natural logarithm of HEXAMOLL®

DINCH biomarkers standardized for creatinine were not associated with the FSIQ score
in the three cohorts (Figure 3). Crude and adjusted β and 95% CI of all linear regression
models are reported in Supplementary Table S4.
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Figure 3. Forest plot showing the association between FSIQ score and the natural logarithm of
HEXAMOLL® DINCH biomarkers standardized for creatinine adjusted for the highest education
level of the household of the child, child’s sex, and body mass index z-score.

Supplementary Table S5 reports the results of simple and multiple linear regression be-
tween the FSIQ score and the natural logarithm transformation of phthalates/HEXAMOLL®

DINCH biomarkers not standardized for creatinine.
The results of simple and multiple linear regression models between the FSIQ score

and the natural logarithm transformation of the biomarkers 5OH-MEHP+5cx-MEPP, 5OH-
MEHP+5oxo-MEHP, and OH-MINCH+cx-MINCH expressed in molar unit standardized
for creatinine in the NAC-II, OCC, and PCB cohorts are shown in Table S6.

4. Discussion
4.1. Internal Consistency

The study protocol hypothesized that increased levels of biomarkers of phthalates and
HEXAMOLL® DINCH, adjusted for confounders, might be associated with a decreased
child’s overall cognitive ability. Contrary to this hypothesis, the results of this evaluation
lack significant and consistent evidence of inverse associations between this group of
exposures and FSIQ. In addition, as described in Figures 2 and 3, results varied widely by
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type of phthalates and HEXAMOLL® DINCH metabolites. Results related to MnBP, MiBP,
and MBzP, and HEXAMOLL® DINCH biomarkers do not show significant associations
in either direction, and β estimates do not differ greatly by cohort. By contrast, results on
DEHP phthalates (5OH-MEHP, 5oxo-MEHP, and 5cx-MEPP and their sum-parameters)
show opposite directions of the association by cohort. In fact, linear regression models
display direct associations between child’s FSIQ score and some DEHP biomarkers in
the Italian and Slovak cohorts, although the relation was not statistically significant in
the latter. Whereas in the Danish OCC, the associations between the FSIQ score and the
DEHP biomarkers tend to be inverse albeit statistically imprecise (p-value ≥ 0.1). At the
same time, DEHP exposure in Danish children averages two to four times lower than
in Italian children. However, at increasing levels of DEHP biomarkers, Italian children
perform better according to FSIQ. These inconsistent results, especially those pertaining
to the group of DEHP biomarkers, elicit several potential interpretations. According to
an inverse, linear relation, should phthalates exposure be a cause of lower IQ scores in
children, we would expect to see it more clearly in the cohorts that are exposed to higher
levels, not otherwise. To reconcile the results from these cohorts, rather than linear inverse
or direct relations between DEHP concentration and FSIQ, a U-shaped dose-response curve
could be considered as the lowest and highest concentrations within the study range and
are associated with higher neurodevelopmental scores and intermediate concentrations
are associated with lower IQ. While non-monotonic associations cannot be excluded,
the experimental and epidemiologic evidence of such U-shaped health effects is limited.
Andrade et al. [69] showed a non-monotonic dose–response on rat brain aromatase activity
in a study following in utero and lactational exposure to DEHP. Do et al. [70] presented
non-monotonic dose effects of in utero exposure to DEHP on reproductive markers in
male mouse fetuses. DEHP exposure has been associated with further non-monotonic
neuroendocrine effects in experimental animals [71]. Finally, Choi et al. [72] observed a
non-monotonous association (U-shaped) between the level of DEHP and the risk of atopic
dermatitis in children. Further evidence on the specific equations that might associate
phthalates and child neurodevelopment must be obtained, and currently alternatives to a
linear relation in epidemiologic studies remain scientifically weak.

A second possible interpretation of these results would be that cohort-specific, residual
confounding is still present in the study. Statistical analyses were conducted using harmo-
nized data of three European existing cohorts. In the evaluation of the association between
phthalate/HEXAMOLL® DINCH biomarkers of exposure and child neurodevelopment,
only common covariates were considered. Residual confounding might be present despite
regression models were adjusted for the education level of the household, child’s sex, and
BMI z-score, and many more factors were considered as potential confounders and then
dismissed in the analytical phase, according to an a priori Directed Acyclic Graph (DAG)
(Supplementary Figure S1) elaborated during the HBM4EU project [73].

According to epidemiologic principles of confounding, we propose that candidate
factors acting as residual confounders in this study may be particularly dietary compo-
nents that are directly associated with DEHP concentration [74] and concurrently, either
directly [75] or through mediation (e.g., socioeconomic status) [76–78] affecting the child’s
neurodevelopment. In fact, certain items in the diet might act as positive—i.e., away from
the null—confounders but in the opposite direction depending on the country’s diet. In
the results of our study, the two cohorts showing opposite effects of DEHP originate from
a Northern (Denmark) and a Southern (Italy) European country. The Diet of Italian and
Danish children differ by type of fat consumed. According to Rippin et al. [79], the pro-
portion of the type of fat represented by saturated fats, monounsaturated fats (MUFAs),
and polyunsaturated fats (PUFAs) in Italian children is 33%, 46%, and 12%; corresponding
figures for Danish children being 40%, 36%, and 16%. Furthermore, the European Food
Safety Authority (EFSA) [80] has estimated that children’s daily consumption of milk and
dairy products in Italy and Denmark is 267 g and 500 g, respectively. Considering the
distribution of DEHP by dietary item, for example, it has been reported that olive oil may
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be contaminated with DEHP in Italy [81]. However, a Mediterranean diet, particularly a
high intake of olive oil, is also associated with a healthy lifestyle, a higher socioeconomic
status [82–85], and better cognitive performance in children [75,86].

Should the null hypothesis (DEHP not associated with FSIQ) be the correct explanation
the lack of inclusion of olive oil intake in the Italian model or an incomplete socioeconomic
status characterization may have determined a confounded, overestimated, positive β for
DEHP metabolites concentration in the Italian NAC-II. As opposed to the latter hypothesis,
items in the Danish diet may have acted as a confounder leading to an underestimation
of the β for DEHP metabolites in the Danish OCC; should DEHP, for example, be associ-
ated with the consumption of highly processed or packaged dairy products [74], again,
potentially mediated by socioeconomic status. In this case, inverse, but confounded, β for
DEHP metabolites concentration in the Danish OCC could emerge because no adjustment
has been made for other molecules, nor type of fat, present in certain dairy foods that
may have negative effects on neurodevelopment. The role of residual confounding as
an explanation for the results of this study that are heterogeneous by country, rests on
the underlying assumption that cultural and socioeconomic status determines different
lifestyles, especially different dietary choices, in different countries and that DEHP expo-
sure may be associated with opposite levels of society by country. A recent investigation
on the association between the socioeconomic position and exposure to multiple envi-
ronmental contaminants, phthalates included, conducted in six European mother–child
cohorts has shown that the association may be present in both directions depending on the
contaminant [87]. Heterogeneity of the direction by country and study area has also been
reported [88,89].

Regarding possible residual confounding by variables that were included as terms
in the linear regression models, it is very unlikely that the child’s sex and body mass
index z-score were measured and coded incorrectly due to their easy ascertainment and
calculation. The situation differs for socioeconomic status since this determinant of child’s
neurodevelopment may depend on a combination of educational, financial, social, cultural,
and human capital resources available at the individual and group level. A composite
family affluence scale is generally preferred to describe socioeconomic status than a single
variable. Due to differences by country in the three original studies, the only common
available information was educational level (ISCED). Furthermore, ISCED was categorized
as Low education (ISCED 0–2), Medium education (ISCED 3–4), and High education
(ISCED ≥5) to avoid categories holding too few subjects in certain countries. This choice
may have determined severe under-adjustment and subsequent residual confounding for
socioeconomic variables not included in the model, such as the income of the household
and occupation of the mother and/or father.

In addition, within cohort error in the β for DEHP may have been caused by the
absence of inclusion of effect modification (i.e., synergistic) terms for child’s sex, BMI,
education, or for other variables not included in the analyses. The reason for such exclusion
was the relatively small size (N = 300) of each cohort.

After modeling, confounding, and effect modification, a fourth common reason de-
termining unexpected results is measurement error in the exposure assessment. Urine
phthalates in the three cohorts were measured by three different laboratories, although all
these laboratories adhered to the same QA/QC and EQUAS procedures. For HEXAMOLL®

DINCH, OCC urine samples were analyzed in Denmark, while NAC-II and PCB cohort
urine samples were in the same lab in Slovakia.

Furthermore, as in any cross-sectional study design, the simultaneous measurement of
phthalate/HEXAMOLL® DINCH exposure and assessment of neurodevelopment does not
take into account the latency between exposure and the future effect on neurodevelopment.
The phthalate and HEXAMOLL® DINCH metabolite levels were not determined during in
utero phase. Therefore, potential intra uterine effects were not covered by this study.

Phthalate metabolites are non-persistent chemicals with short biological half-lives in
the range of hours/days. Therefore, the use of a single urine sample to characterize mid-
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to long-term exposure frequently might lead to exposure misclassification [90]. However,
as they are taken up continuously, the levels reached might be stable according to stable
consumer and nutritional habits. Future cohort studies should consider using recently
validated methods to pool multiple urine samples, improving exposure characterization
while maintaining cost-effectiveness [91,92].

As far as potential misclassification of the outcome variables (i.e., FSIQ of the WISC),
in this analysis, WISC’s scores were calculated according to three different editions and are
not directly comparable. This might be the most relevant limitation of this analysis. For this
reason, we conducted separate analyses for each cohort and did not present meta-analytical
results. In addition, the distributions of the FSIQ score in the three cohorts were statistically
different, which may be partially explained by the different percentage distribution of
the highest education level of the child household. Furthermore, the mean value of IQ
score of children of the Italian cohort was 9 points higher than those of the Italian standard
population. Moreover, the mean FSIQ score of children in the PCB cohort was 19 points
lower than the Slovak standard population. In contrast, the mean FSIQ of the Danish cohort
was only two points lower compared to the standard Danish population.

4.2. External Consistency

Evidence from the literature about phthalates exposure in children and their neurode-
velopment does not show consistent results, either. In recent research by Hyland et al. [93],
a positive association between FSIQ score (WISC 4th edition) assessed at 7-years, and
the prenatal exposure to the ∑ of DEHP biomarkers was found in girls. Moreover, the
general intellectual ability assessed through the Intelligence and Development Scales on
7-year-old Polish children was positively associated with prenatal oxo-MEHP exposure,
whose median value corresponds to 1.3 µg/L [94].

On the contrary, Kim et al. [95] reported a robust inverse association between urinary
DEHP’s biomarkers levels (OH-MEHP and oxo-MEHP geometric mean concentrations:
64.1 µg/g crt and 47.6 µg/g crt, respectively) of 6-year-old Korean children and their
FSIQ score (WISC Korean 3rd edition), even after adjustment for demographic variables
and Comprehensive Attention test scores (OH-MEHP β = −9.27; 95% CI: −17.25–−1.29;
oxo-MEHP β = −9.83; 95% CI: −17.44–−2.21). Moreover, urinary concentrations of DEHP
oxidative metabolites at 3 years of age were inversely associated with children’s FSIQ
score at 5 and 8 years [96]. Higher postnatal urinary DEHP’s biomarker concentrations
were associated with lower intelligence quotient scores in Taiwanese children 2–12 years
of age [97]. A 2018 meta-analysis performed by Lee et al. [47] concluded that exposure to
DEHP could be a risk for adequate children’s neurodevelopment.

The results on the relation between the exposure to the remaining phthalates biomark-
ers (MEP, MBzP, MnBP, and MiBP) and FSIQ score in the three cohorts are not convincing.
In agreement with our results, the systematic review and meta-analysis of Radke et al. [98]
reported that the evidence for the association between cognition and DEHP’s biomarkers,
MnBP, MBzP, and MiBP is characterized by uncertainties that prevent establishing a causal
conclusion in both directions.

For HEXAMOLL® DINCH biomarkers, none of the current analyses showed any
robust or consistent inverse associations with the child’s FSIQ score in the three cohorts.
As this is the first evaluation considering HEXAMOLL® DINCH biomarkers exposure in
children and their neurodevelopment, further studies are needed to confirm or contradict
the current findings.

One of the reasons for such overall negative, or at least unconvincing, results might be
that exposure levels in these children were too low to show any effects. Indeed, urinary
concentrations of phthalates and HEXAMOLL® DINCH biomarkers in these Italian, Danish
and Slovak children were far below the Human Biomonitoring Guidance Values [99].
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5. Conclusions

We found contrasting evidence on the association between phthalate biomarkers and
child cognitive performance in the three European children cohorts. Therefore, this analysis
does not add evidence of a causal effect of phthalates exposure on a child’s IQ. Finally, our
study also does not provide evidence of an association between HEXAMOLL® DINCH
exposure and an adverse IQ performance. Non-monotonic effects of these endocrine-
disrupting chemicals could also be taken into account. The timing of exposure and the
synergic effect of other substances should be the subject of further approaches in addressing
this scientific hypothesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Scoping Review—the Association between Asthma and Environmental Chemicals. Int. J. Environ. Res. Public Health 2021, 18,
1323. [CrossRef]

39. Philips, E.M.; Jaddoe, V.W.V.; Trasande, L. Effects of Early Exposure to Phthalates and Bisphenols on Cardiometabolic Outcomes
in Pregnancy and Childhood. Reprod. Toxicol. 2017, 68, 105–118. [CrossRef]

40. Bølling, A.K.; Sripada, K.; Becher, R.; Bekö, G. Phthalate Exposure and Allergic Diseases: Review of Epidemiological and
Experimental Evidence. Environ. Int. 2020, 139, 105706. [CrossRef]

41. Kim, K.N.; Kim, H.Y.; Lim, Y.H.; Shin, C.H.; Kim, J.I.; Kim, B.N.; Lee, Y.A.; Hong, Y.C. Prenatal and Early Childhood Phthalate
Exposures and Thyroid Function among School-Age Children. Environ. Int. 2020, 141, 105782. [CrossRef]

42. Jurewicz, J.; Hanke, W. Exposure to Phthalates: Reproductive Outcome and Children Health. A Review of Epidemiological
Studies. Int. J. Occup. Med. Environ. Health 2011, 24, 115–141. [CrossRef] [PubMed]

43. Ejaredar, M.; Nyanza, E.C.; ten Eycke, K.; Dewey, D. Phthalate Exposure and Childrens Neurodevelopment: A Systematic Review.
Environ. Res. 2015, 142, 51–60. [CrossRef] [PubMed]

44. Zhang, Q.; Chen, X.Z.; Huang, X.; Wang, M.; Wu, J. The Association between Prenatal Exposure to Phthalates and Cognition and
Neurobehavior of Children-Evidence from Birth Cohorts. NeuroToxicology 2019, 73, 199–212. [CrossRef] [PubMed]

45. Minatoya, M.; Kishi, R. A Review of Recent Studies on Bisphenol a and Phthalate Exposures and Child Neurodevelopment. Int. J.
Environ. Res. Public Health 2021, 18, 3585. [CrossRef] [PubMed]
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